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Lagged Explanatory Variables
and the Estimation of Causal Effects

1 Introduction

Lagged explanatory variables are a common strategy used in political science in re-

sponse to endogeneity concerns in observational data. This strategy—what we term “lag

identification”—is particularly attractive because it purports to alleviate threats to causal

identification without requiring any other data than that available in the dataset. Sur-

prisingly, however, there exists no formal analysis of lagged explanatory variables in the

context of endogeneity. Despite the popularity of lag identification in contemporary polit-

ical science, researchers have few theoretical results to guide them about whether lagged

explanatory variables are actually effective in surmounting endogeneity concerns, under

what conditions, or whether lagged explanatory variables might generate even more mis-

leading results than if researchers were simply to ignore endogeneity altogether.

In this paper we provide such an analysis. Focusing on what we consider to be the

best-case scenarios for lag identification to be effective, we find that lag identification is

almost never a solution to endogeneity problems in observational data. Rather than mit-

igating endogeneity threats, or facilitating the identification of causal effects, lag iden-

tification merely moves the channel through which endogeneity affects the estimates of

parameters of interest. We characterize precisely the conditions under which lagging an

explanatory variable purges an estimate of endogeneity: these are (i) serial correlation

in the potentially endogenous explanatory variable and (ii) no serial correlation among

the unobserved sources of endogeneity. This supplements the selection on observables

assumption that motivates the regression with a new identification assumption of “no dy-

namics among unobservables,” which may be problematic insofar as it places substantive

restrictions on the properties of a variable that is not observed. Our analysis allows schol-
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ars to appreciate just what it is at stake when lagging explanatory variables in the context

of endogeneity, and provides design-based reasoning that will enable more considered

choices between different statistical approaches to this problem.

Our argument is most closely related to concurrent research by Reed (2015), who stud-

ies the use of lagged explanatory variables for causal inference in economics, but focuses

on simultaneity and proposes the use of lagged explanatory variables as instruments for

endogenous explanatory variables. In contrast, our work focuses on more general forms

of endogeneity, and our results imply that Reed’s recommendations are unlikely to repre-

sent a valid solution to the identification problem. Our work is also related to Blackwell

and Glynn (2014), who are broadly concerned with establishing theoretical results about

causal inference using time-series cross-sectional (i.e., large-T and large-N panel) data. All

of our arguments are consistent with theirs, and in fact, our results emerge as a special and

yet particularly important case of their more general analysis with only two time periods

(see also Robins et al. 2000, p. 551). Our contribution is more focused, and designed to

identify a specific practice in political science research whose consequences are not prop-

erly understood. As we demonstrate in Section 2 below, lag identification is a particularly

common statistical practice that is pervasive in contemporary political science research,

counting for dozens upon dozens of articles published in prominent political science out-

lets in the year 2014 alone. Finally, our work is also closely related to Cranmer et al. (forth-

coming), who propose a Bayesian methodology for identifying lag structures in the face

of theoretical uncertainty about how long lags should be.

Our analysis applies to any statistical problem in the social sciences in which endo-

geneity threatens the identification of a parameter of interest in time-series cross-sectional

data, including cases where researchers do not claim to be estimating treatment effects.

However, our contribution is also motivated by the same concern for credible estimates

of causal effects that has motivated recent advances in randomized controlled trials (Du-

flo et al. 2007; Glennerster and Takavarasha 2013), field experiments (Gerber and Green
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2012; Harrison and List 2004; Teele 2014), instrumental variables (Angrist et al. 1996; Im-

bens 2014; Sovey and Green 2011), regression discontinuity (Imbens and Lemieux 2008),

differences-in-differences estimation (Bertrand et al. 2004), marginal structural models

(Robins et al. 2000), and other design-based statistical techniques in the social sciences

(see Dunning 2012; Samii 2016). The common theme uniting this literature is the impor-

tance of design; in the words of Sekhon (2009, 503), “without an experiment, a natural

experiment, a discontinuity, or some other strong design, no amount of econometric or

statistical modeling can make the move from correlation to causation persuasive.” We

echo this conclusion, showing that one popular statistical “fix” does not rescue credible

estimates of causal effects in the presence of endogeneity.

The rest of this paper is organized as follows. In section 2, we discuss the general

problem posed by the use of lagged variables as regressors using directed acyclic graphs

(Pearl 2009). We also present an overview of recent articles in the most prominent politi-

cal science journals which rely on lagged explanatory variables as a source of exogenous

variation. Section 3 derives analytical results for the biases of lag identification in a com-

mon parametric setting: an ordinary least squares (OLS) regression. In this parametric

case, we provide a formal result for the “no dynamics among unobservables” condition

that allows for conservative estimates of causal effects using lagged explanatory variables

in the presence of endogeneity. Section 4 presents Monte Carlo results showing that the

use of lagged explanatory variables can worsen the identification problem, with conse-

quences for inference that are often worse than simply ignoring endogeneity altogether.

These results also allow us to describe the tradeoffs between ignoring endogeneity and lag-

ging explanatory variables, which reveals how design-based reasoning informs the choice

between alternative specifications. Section 5 entertains a wide range of extensions: alter-

native lag structures, generalized method of moments (GMM) estimation, classic time se-

ries applications, and different sources of endogeneity, demonstrating that our findings

emerge across many data structures and estimation strategies. Section 6 outlines a set of
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guidelines for researchers to follow when using lagged explanatory variables to surmount

endogeneity problems in observational data, and Section 7 concludes.

2 Problem Definition

There are three reasons why a lagged value of an independent variable might appear

on the right hand side of a regression.

1. Theoretical: In some contexts, there are clear theoretical reasons to expect that the ef-

fect of an explanatory variable only operates with a one-period lag. Such is the case,

for example, when economists estimate Euler equations in order to study intertem-

poral substitution behaviors, or when considering the efficient market hypothesis in

its random walk version, wherein pt, the price of an asset today, is a function of the

price of the same asset yesterday, pt−1, and an error term et. It could also be the case

that the analysis is directly interested in lagged effects conditional on contempora-

neous effects, in which both current and lagged values of the independent variable

would appear on the right hand side of a regression.

2. Statistical: In other contexts, lagged independent variables serve a statistical function.

Examples include dynamic panel data analysis (Arellano and Bond 1991) as well as

distributed lag, error correction, and related families of dynamic statistical models

(see De Boef and Keele 2008). In such cases, a general model is required and lagged

explanatory variables enable the calculation of both short- and long-term effects, but

all parameters are still weakly exogenous by assumption.

3. Identification: Frequently, applied researchers propose to use a lagged value of an

explanatory variableX in order to “exogenize” it when estimating the effect ofX on

Y . Since Yt cannot possibly cause Xt−1, the (often implicitly made) argument goes,

replacing Xt with Xt−1 obviates concerns that X is endogenous to Y .
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Our focus in this paper is on the use of lagged explanatory variables for identification

purposes. None of our critiques of lag identification apply to theoretical or statistical mo-

tivations for including lagged values of independent variables on the right hand side of

a regression, although we will touch briefly on both of these in our Monte Carlo analy-

sis in section 4. If theory indicates that causal effects operate with a one period lag, or

if the research design implies a dynamic panel approach, then lagged explanatory vari-

ables are wholly appropriate. But as we now discuss, in much applied research, neither a

theoretical nor a statistical argument is provided when researchers lag their independent

variables.

How common is the practice of lagging explanatory variables for identification pur-

poses? To answer this question, we examined all articles published in the top general

journals in political science, economics, and sociology, as well as several top journals in

the political science subfields of comparative politics and international relations (country-

year data structures are common in these subfields, so we anticipate that problems would

be particularly acute here). We identified articles that used lagged explanatory variables

by searching the full text of each for the word “lag,” and then discarding articles that used

lags purely for the purposes of forecasting, or that used the word “lag” in some other con-

text, including articles that lagged only their dependent variable, or included only spatial

lags. We also looked closely at the justifications that authors provided for including lagged

explanatory variables.

In the American Political Science Review, between 2010 and 2014, we uncovered twenty-

three published articles in which authors employed a lagged independent variable in a

regression analysis. In fifteen of these articles—65%—we found that authors either had

explicitly argued that lagged explanatory variables were used to alleviate endogeneity

concerns, or provided no justification at all for lagging an explanatory variable. The pic-

ture that emerges from other major journals in political science is even worse (see Table 1).

In 2014 alone, we count a total of seventy-seven published articles in prominent political
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Table 1: Reviewed Journals Published in 2014

Journal Name Discipline Lag Articles Lag “Identified”
American Political Science Review Political Science 3 1
American Journal of Political Science Political Science 10 6
Journal of Politics Political Science 10 8
British Journal of Political Science Political Science 10 8
Comparative Political Studies Political Science 14 7
International Organization Political Science 8 8
International Studies Quarterly Political Science 15 10
World Politics Political Science 7 6
American Economic Review Economics 4 2
Econometrica Economics 1 1
Journal of Political Economy Economics 1 1
Quarterly Journal of Economics Economics 2 0
Review of Economic Studies Economics 1 1
Review of Economics and Statistics Economics 8 6
American Sociological Review Sociology 1 1
American Journal of Sociology Sociology 0 0
European Sociological Review Sociology 1 1

Notes: Lag Articles is a raw count of the number of articles published in 2014
that employed a lagged explanatory variable. Lag“Identified” is the number
of Lag Articles that either involved endogeneity as a justification for lagging
an explanatory variable, or contained no justification at all for lagging an
explanatory variable.

science journals employing lagged explanatory variables, fifty-four of which we coded as

cases of lag identification.

Comparing across disciplines using the data in Table 1 also suggests that this practice

is much more common in political science relative to economics or sociology. Moreover,

articles in political science journals frequently invoked “simultaneity” or “reverse causal-

ity” explicitly as the sole motivation for lagging explanatory variables.1 Somewhat more

1Some examples are as follows: Baccini and Urpelainen (2014, 205) write “Most of these

variables are lagged by one year to avoid endogeneity problems.” Lehoucq and Perez-

Linan (2014, 1113) write “We lag both economic variables one year to minimize problems

of endogeneity.” Steinberg and Malhotra (2014, 513) write “All independent and control
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concerning, a substantial minority of articles that we identified in this survey contained no

justification whatsoever for their lag choice. We did identify a number of cases where au-

thors employed lagged explanatory variables as part of an error correction or distributed

lag model, but these remain the minority of the articles that we identified. As Table 1

shows, in 2014, across a range of journals, more than half of the articles that employed

lagged exogenous variables either explicitly invoked endogeneity, or contained no justifi-

cation at all.

This review of recent scholarship reveals that the practice of lagging explanatory vari-

ables for identification purposes remains common in the most prominent political science

journals. We acknowledge that authors who use lags for identification purposes almost

certainly would not hold that lags are a “true solution” to identification problems. Still,

this review of recent literature and the examples that we have cited above reveal that au-

thors justify this choice on the presumption that lag identification somehow mitigates these

problems. Our analysis allows us to characterize this claim with greater precision. We

now turn to closer examination of the conceptual problems that lag identification creates,

which is a foundation for better understanding the tradeoffs between different estimating

strategies in the presence of endogeneity.

2.1 Directed Acyclic Graphs

Following Pearl (2009), we begin with an intuitive discussion of the problem which

relies on directed acyclic graph (DAGs). The DAG in Figure 1 shows the fundamental

identification problem in observational data: the identification of the causal relationship

flowing fromX to Y is compromised by the presence of unobservable factors U which are

correlated with both X and Y .

Figure 2, wherein we add subscripts t to clarify temporal ordering, illustrates the lag

variables are lagged by one year to mitigate the possibility of simultaneity or reverse

causality bias.”
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Figure 1: The Identification Problem
X Y

U
Notes: This is a representation of a causal relationship from X to Y where
identification is compromised by unobservables U .

identification approach that we study in this paper. Figure 2 is a special case of Figure 1(a)

in Robins et al. (2000, p. 551), which we believe is the first published example of a DAG

representing our data structure, but which does not consider lag identification in any way.

Lag identification means replacing Xt with its lagged value, Xt−1 in a regression of X on

Y . The DAG representation in Figure 2 clarifies the logic behind this approach, which is

formally a selection on observables identification strategy (see Keele 2015: 321-322). It must

be the case that there is a causal pathway from Xt−1 → Xt, or else Xt−1 could not be re-

lated to Y . However, the fact that there is no direct causal link running from Ut to Xt−1

means that there is no possibility that this particular unobserved confounder Ut threat-

ens causal identification. But Figure 2(a) also shows that replacing Xt with Xt−1 merely

Figure 2: Lagged Independent Variable as a Solution?

Xt−1 Xt Yt

Ut−1 Ut

(a)

Xt−1 Xt Yt

Ut−1 Ut

(b)

Notes: This is a representation of the causal relationship from X to Y that
is implied when using a lagged value of X to overcome the identification
problem in figure 1. In (a), Ut depends on its previous value Ut−1. In (b) the
two are independent.

moves the endogeneity problem back one time period. It is true that Xt−1 is unaffected

by Ut, but it is affected by Ut−1 for the same reason that Ut → Xt. As a result, if there are

any temporal dynamics in the unobservables, then the causal pathways Ut−1 → Ut → Yt
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and Ut−1 → Xt−1 → Xt → Yt prevent causal identification using Xt−1. The critical identi-

fication assumption in lag identification, therefore, is that there are no temporal dynamics

among the unobservables, as shown in Figure 2(b). This assumption is not testable: doing

so would require observing U , the unobservable confounder that motivates lagging X on

identification grounds. Interestingly, if Ut−1 6→ Ut then Xt−1 is actually an instrument for

Xt; that is, if lagged explanatory variables are valid exogenous proxies for contemporary

explanatory variables, they are also valid instruments as well.

Our discussion thus far has focused on endogeneity in the form of unobserved hetero-

geneity. In many applications, however, lag identification is justified on “reverse causality”

grounds rather than unobserved heterogeneity grounds. The classic example of simulta-

neous causation is Haavelmo’s (1943) treatment of the joint determination of consumption

and investment. This causal process is depicted in Figure 3, which shows that if Yt causes

Xt, Yt−1 also causesXt−1. Note that Figure 3 is not a DAG because the causal relations that

it depicts are cyclic. Nevertheless as Pearl (2009, pp. 27-28, 215-217) illustrates, a graphical

approach facilitates the exposition of identifiable causal relationships.

Figure 3: Lagged Independent Variable with Reverse Causality

Xt−1

Xt Yt

Yt−1

(a)

Xt−1

Xt Yt

Yt−1

(b)

Notes: This is a representation of simultaneous causation with no unobserv-
ables. In (a), Yt depends on its previous value Yt−1. In (b) the two are inde-
pendent conditional on X .

The argument that temporal ordering prevents current realizations of the dependent

variable from affecting past values of a causal variable may be more reasonable as a defense

against simultaneous or reverse causation. The identification assumption, however, is now

that there are dynamics in X but not Y (Figure 3(b)). We will analyze a system of this
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sort in section 5.4 below, but to preview our results, we find that simultaneous causation

without unobserved confounders generates similar pathologies for lag identification.2

3 Analytical Results

The DAGs in the preceding section are useful for clarifying the intuition behind lagged

independent variables, and also for demonstrating why they are unlikely to sidestep prob-

lems of endogeneity. To characterize precisely the consequences of lagged independent

variables in the context of endogeneity, in this section we analyze formally the conse-

quences of lag identification in a bivariate OLS regression setup. We reiterate that results

apply to any situation in which endogeneity affects estimates of the relationship between

X and Y using observational data, not only to analyses that explicitly seek to identify

casual effects.3

2In some cases, it is possible to reformulate reverse causality as problems of unobserved

heterogeneity in which a latent variable representing the “likelihood” or “propensity” of

Y is an unobserved confounder that causes both Y and X . See Pearl (2009, 145-49) for a

related argument on the observational equivalence of structural equation models.
3 Our analysis applies directly to the estimation of treatment effects if we assume that

the OLS regression framework is the correct functional form for the estimation of the

causal effect of X on Y . Of course, if the correct functional form is unknown, then a

non-parametric approach such as those offered by Pearl or Rubin, as well as precise as-

sumptions about counterfactual outcomes, are necessary to define estimators that esti-

mate causal effects.
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Consider the model

Yit =βXit + δUit + εit (1)

Xit =ρXit−1 + κUit + ηit (2)

Uit =φUit−1 + νit (3)

where i and t index units and time, respectively; 0 ≤ ρ < 1; 0 ≤ φ < 1; and εit ∼ N(0, σ2
ε ),

ηit ∼ N(0, σ2
η), and νit ∼ N(0, σ2

ν). Dropping i for the remainder of this section (it will

reappear in the next section), it is well known that if we estimate

Yt =bXt + et (4)

then the resulting estimate of β is biased because the unobserved confounder U is omit-

ted.4 The magnitude of the bias is a function of the variances and covariances of X and U

as well as magnitude of the causal effect of the unobserved confounder:

E[b̂Xt ] =β + δ · Cov(X,U)
V(X)

(5)

If either δ or Cov(X,U) = 0—if U has no effect on Y , or if U is uncorrelated with X—then

endogeneity is not a problem, and E[b̂Xt ] = β.

Now consider a regression that replaces X with Xt−1.5 This means estimating the fol-

lowing equation:

Yt =bXt−1 + et (6)

4We use Greek letters for population coefficients and Latin letters for sample coefficients.
5For expositional purposes we do not consider here more complicated models that condi-

tion on past values of Y . For a contemporary analysis of when to include lagged depen-

dent variables to estimate causal effects, see Dafoe forthcoming.
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While this is plainly not an unbiased estimate of β, one hope is that lag identification will

estimate a function of β and the autocorrelation in X , or ρ—a moderated, or “conserva-

tive,” estimate of β. However, by expression (2) we know that Xt is also a function of Ut.

We may therefore rewrite equation (1) as follows:

Yt = β(ρXt−1 + κUt + ηt) + δUt + εt

= βρXt−1 + (βκ+ δ)Ut + βηt + εt (7)

This immediately makes clear that the error term et in (6) now contains (βκ+δ)Ut+βηt+εt.

Therefore, b̂Xt−1 is not a consistent estimate of either β or the conservative βρ. To see what

exactly b̂Xt−1 does estimate, recall that b̂Xt−1 = Cov(Xt−1,Yt)
V (Xt−1)

. We will assume here that κ

represents the only source of endogeneity of X , so we impose that ση,ν = 0. We may

therefore write

plimn→∞ b̂Xt−1 =
Cov(Xt−1, βρXt−1 + (βκ+ δ)Ut + βηt + εt)

V(Xt−1)

=

Cov(Xt−1, βρXt−1)

V(Xt−1)
+

Cov(Xt−1, (βκ+ δ)Ut)

V(Xt−1)
+

Cov(Xt−1, βηt)

V(Xt−1)
+

Cov(Xt−1, εt)

V(Xt−1)

(8)

We know that by design, given expressions (1– 3), the third and fourth terms in (8) reduce

to zero. In Appendix 1 we show how to simplify the remaining terms to produce a final

expression for what lagged independent variables estimate.

plimn→∞ b̂Xt−1 =βρ+
φκ(βκ+ δ)V(U)

(1− φρ)V(X)
(9)

Contrasting lag identification bias in (9) with the standard result for omitted variable

bias in (5) usefully highlights the troublesome properties of lagged independent variables

for estimating β, which is the true contemporaneous effect of X on Y , or βρ, which is the
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true lagged effect of X on Y . The difference between b̂Xt−1 and βρ increases with both the

degree of endogeneity, κ, and the serial correlation in U , φ. Furthermore, when (5) does

not yield a biased estimate of β because δ = 0 but φ 6= 0 or ρ 6= 0, (16) does. In general,

laggingXt and using it as a regressor creates a “back-door channel” through Ut−1 → Xt−1

and Ut−1 → Ut → Yt. Expression (16) also establishes that one of the following conditions

must hold for lag identification to produce a consistent estimate of βρ, the “conservative”

estimate of the effect of X on Y , attenuated by ρ.

1. No serial autocorrelation in U (φ = 0), i.e., no dynamics among unobservables.

2. There is no endogeneity, which means that κ = 0 or δ = 0.

The first case is precisely the condition identified in Section 2.1 above. In that case, the sec-

ond term reduces to zero, and plimn→∞ b̂Xt−1 = βρ. In the second case, there is obviously

no identification problem, and thus no need for lag identification to begin with.

4 Monte Carlo Analysis

We have shown so far that lagging independent variables does not produce statistical

estimates that are free from endogeneity, except under the specific conditions that there

is no endogeneity, or there are no dynamics among the unobserved sources of endogene-

ity. We have also characterized analytically the source and magnitude of this bias in a

simple OLS regression setup. In this section, we use Monte Carlo experiments to study

the consequences of lagged explanatory variables in common time-series cross-sectional

applications. Doing so allows us to illustrate tradeoffs that arise when researchers do not

have access to a perfect research design: is it better to ignore endogeneity rather than to

lag explanatory variables in the presence of endogeneity?
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4.1 Setup

Our task is to estimate β, the effect of X on Y .6 Figure 4 is an extension of our earlier

analysis which parameterizes the relations of interest. As above, the source of endogeneity

Figure 4: Monte Carlo Simulations

Xt−1 Xt Yt

Ut−1 Ut

ηt−1 ηt

νtνt−1

εt

ρ β

κ κ δ
φ

Notes: This is a schematic representation of our Monte Carlo simulations,
with Greek letters representing the parameters that we vary in our simula-
tions. X is the explanatory variable of interest, represented here as a function
of a random variable ν and its own past value. U is an unbserved source of
endogeneity, and is itself a function of a random variable ν and its own past
value. Y is the dependent variable, and is a function of observed X , unob-
served U , and a random error term ε. β is the parameter to be estimated, κ
measures the size of the endogeneity problem, and ρ and φ capture dynam-
ics in X and U , respectively.

is the unobserved confounder U , which is correlated with both X and Y . In all simula-

tions, we set the direct effect of U on Y (which we called δ above) equal to 1, and explore

the consequences of endogeneity by varying κ, the pathway that makes X endogenous to

Y by forcing Cov(X,U) 6= 0. The remaining two parameters are the autocorrelation pa-

rameters ρ and φ, which capture serial correlation in X and U , respectively. When either

of the autocorrelation parameters is zero, then the value of each variable is statistically

independent of its own lag. In our simulations, we set ρ equal to .5, and then vary φ. A

summary of the parameters that we vary in our simulations in Table 2. For each simu-

lation, we generate a panel with N = 100 units and T = 50 periods, for a total of 5,000

6This is the causal effect of X on Y under the assumption in footnote 3.
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Table 2: Simulation Parameters

Parameter Causal Pathway Simulation Values
β Xt → Yt {0, 2}
κ Ut → Xt, Ut−1 → Xt−1 {.5, 2}
φ Ut−1 → Ut {0, .1, .2, ..., .9}
δ Ut → Yt {1}
ρ Xt−1 → Xt {.5}

unit-period observations.7

Our simulations adopt the same DGPs as expressed in equations (1-3). We simulate

each combination of parameter values in Table 2 a total of 100 times, and then test the

performance of the following three estimators in estimating β (the true contemporane-

ous effect of X on Y) or βρ (the true lagged effect of X on Y): (i) the “naı̈ve” estimator

(β̂NAIV E) that regresses Yt on Xt and ignores endogeneity , (ii) the “lag explanatory vari-

ables” estimator (β̂LAGID) that regresses Yt on Xt−1 in an attempt to avoid endogeneity

problems, and (iii) a “correct” estimator (β̂CORRECT ) that regresses Yt on both Xt and the

unobservable Ut.8 The “true” estimator is, of course, counterfactual: we presume that the

researcher does not observe U , or else she would condition on it. The estimates obtained

from a regression model that correctly follows the data generating process, however, will

serve as our empirical benchmark against which to gauge the performance of the other

two estimators.

Our simulations have many moving parts, but the underlying DGP is still simple in

terms of the dynamics that it allows. Among many other simplifications, we assume that

7In each simulation, variables U,X and errors η, ν are each drawn independently from a

standard normal distribution N(0, 1). ε is drawn from N(0, 5). We set the variance of ε at

5 in order to allow for a realistic amount of model uncertainty. Most estimates from our

simulations have an overallR2 between 0.05 and 0.1, which is comparable toR2 measures

in much applied political science research using panel data.
8We estimate each using the “pooled” estimator implemented in the plm library in R.
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there are no dynamic relationships among unobservables and observables. For example,

lagged omitted variables U are not direct causes of current values of Y—they only affect Y

through the pathwayUt−1 → Ut → Yt. Moreover, there are no complex temporal dynamics

inX or U , just simple one-period autocorrelation. We view this relatively straightforward

setup as a conservative way to explore the performance of lagged independent variables

in the most favorable cases.

We evaluate the consequences of lag identification according to three criteria: (i) bias,

(ii) root mean squared error (RMSE), and (iii) the likelihood of Type 1. The last of these is

perhaps the most important from the perspective of applied researchers, as it tells us the

extent to which researchers will make faulty inferences—rejecting true null hypotheses

that β = 0, or failing to reject the null hypothesis when the true β 6= 0—when using

lagged independent variables.

4.2 Results

We begin by comparing bias across the three estimators. For each combination of pa-

rameter values, we save the estimated parameters β̂NAIV E , β̂LAGID, and β̂CORRECT from

each of the 100 simulations,9 and then plot average levels of bias, which is the deviation

of β̂NAIV E and β̂CORRECT from the true contemporaneous effect of X on Y (β). For the lag

identification model, we define bias as the deviation between β̂LAGID and βρ, which is the

conservative estimate of the effect of X on Y . Figure 5 summarizes our main results.

The results from these simulations are clear. When X is endogenous to Y (κ 6= 0),

β̂NAIV E is biased (regardless of the value of φ).10 More importantly, as equation (9) sug-

9We find that 100 simulations is sufficient to produce stable results across our models; in-

creasing the simulations further offers no noticeable improvement in precision and makes

no difference for our conclusions.
10Needless to say, when there is no endogeneity (κ=0), both β̂NAIV E and β̂LAGID serve as

unbiased estimators for β and βρ, respectively.
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Figure 5: Monte Carlo Results
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Notes: The first two rows of this figure display the bias and RMSE for
β̂CORRECT and β̂NAIV E relative to the true value of β, and bias and RMSE
β̂LAGID relative to βρ, based on 100 simulations of the data generating pro-
cess in Figure 4 with β = 2 and ρ = .5. The third row plots the frequency of
Type-1 error when β = 0 and ρ = .5.

gests, as the degree of endogeneity (κ) and the strength of the first-order autoregressive

parameter in the unobservables (φ) increase, the degree of bias associated with β̂LAGID

also increases. Observe in Figure 5 that the bias in β̂LAGID is even greater than the degree

of bias in β̂NAIV E at higher values of φ. A similar pattern emerges for RMSE. Our results

in Figure 5 show that the RMSE of the lag explanatory variable estimator is larger than

that of the naı̈ve estimator when there exists endogeneity (κ 6= 0) and the unobservable is
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sufficiently persistent (φ > 0.5 at κ = 0.5 and φ > 0.25 at κ = 2).11

Of course, the finding that an incorrect regression specification generates biased pa-

rameter estimates is not surprising. In fact, for most applied researchers, bias may not

matter because—all too commonly, in our view—the size of the estimate of β or βρ is not

necessarily of direct interest, but rather its p-value. That is, researchers are less interested

in whether the sizes of their estimates are upward or downward biased, but whether the

associated p-value from their t-test leads them to reject the null that β = 0 or βρ = 0

at some level of significance. We think that the overwhelming focus placed on statistical

significance in political science research is a major problem, but this is nonetheless an ac-

curate description of current practice in political science and many other social sciences.

And so in the third column of Figure 5, we ask what would happen if an applied researcher

were to use a lagged independent variable in the standard fashion to test the alternative

hypothesis that β 6= 0 when the null hypothesis is true (β = 0), using the standard 95%

confidence threshold.

Our results are troubling. The likelihood of Type 1 error increases dramatically when

κ > 0 and φ increases. The reason for this is apparent in equation (15), which shows

that b̂Xt−1 is a function of the causal effect of the unobserved confounder U , κ, as well

as ρ and φ. Unless there is no endogeneity (κ = 0), which again obviates the need for

lagging X in the first place, lag identification will produce non-zero estimates of βρ even

when β = 0. Substantively, this means that lagging independent variables in response to

concerns about endogeneity will lead analysts working within the mainstream approach

to hypothesis testing to reject null hypotheses that are true, and to find too many estimates

of causal effects that are spurious.

The summary message from these Monte Carlo simulations is unambiguous. Un-

der conditions where there exists endogeneity and dynamics among unobservables, lag-

11The only exceptions are purely incidental: when there is no endogeneity (κ = 0), β̂NAIV E

and β̂LAGID are as efficient as the estimator that conditions on U .
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ging independent variables may generate estimates that are more biased, and with higher

RMSE, than simply ignoring endogeneity altogether. Worst of all, such estimates are more

likely to produce a Type 1 error when endogeneity actually does threaten identification

and the true effect of X on Y is zero.12

These results suggest difficult tradeoffs. On one hand, Type 1 error is nearly certain

when using the naive estimator that ignores endogeneity. On the other hand, Type 1 er-

ror is also nearly certain with the lag estimator unless the autocorrelation parameter in

the unobservables is small, and the larger the endogeneity problem, the more demanding

this requirement. The bias and error of the lag estimator is more likely to exceed that of

the naive estimator under similar conditions. When choosing between lagging explana-

tory variables to mitigate endogeneity and just ignoring endogeneity altogether, the latter

approach is superior only in cases when endogeneity threats and persistence in the unob-

servables are both small.

5 Extensions

In this section we entertain several potential objections to our simulation results, focus-

ing on temporal sequencing of causal effects, unobserved heterogeneity and GMM, and

cases of “pure” simultaneous causality.

5.1 Lagged Effects

One criticism of our baseline results is that they do not realistically reflect the kinds

of data generating processes that scholars mean to capture when lagging independent

variables to confront endogeneity problems. If theory suggests that causal effects oper-

ate with a one-period time lag, for example, then lag identification is not just a way to

12In Appendix 2, we present the cases where ρ = .1 and ρ = .9, which confirm that these

results hold regardless of the degree to which Xt and Xt−1 are correlated.
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avoid endogeneity, it is also the natural way to estimate the parameter of interest. Such

an objection might suggest that our results in the previous subsection are simply a con-

sequence of proposing a different data generating process than the one that might justify

lag identification.

Attuned to such concerns, in Figure 6 we propose a different model for Monte Carlo

analysis. Here, as before X is endogenous to Y through U , but the parameter of interest

Figure 6: Monte Carlo Simulations: Xt−1 as the Causal Variable

Xt−1 Xt Yt

Ut−1 Ut

ηt−1 ηt

νtνt−1

εt

ρ

ξ
κ κ δ

φ

Notes: This is a schematic representation of our Monte Carlo simulations
where Xt−1 is the true causal variable (the causal effect of Xt is, by assump-
tion, 0). It is otherwise identical to Figure 4.

ξ is the one-period lagged effect of X on Y . We therefore assume that the effect operates

with a one-period lag, that the empirical specification is designed to estimate that quantity,

and also that the contemporaneous effect of Xt on Yt is exactly zero. This reflects perhaps

the most favorable case for lag identification, one in which causal effects operate over time

and in which there is no direct pathway that runs from the unobserved Ut to the variable

of interest, in this case Xt−1.

The DGPs for simulations based on Figure 6 can be found in Appendix 3. In Figure 7 we

compare estimates of ξ from the lag explanatory variable estimator (ξ̂LAGID), an extended

version of the lag explanatory variable estimator that also conditions on Yt−1 in an attempt

to capture temporal dynamics in the unobservables (ξ̂LDV ), and the “correct” model that

conditions both onXt−1 and Ut (ξ̂CORRECT ), once again as an empirical benchmark against
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which to judge the others. Our results show that even under the favorable assumption

that Xt−1 is the causal variable of interest, lagged independent variables generate biased

estimates of ξ, even when also including a lagged dependent variable. As above, when

κ > 0, however, lagging independent variables generates biased and inefficient estimates

of ξ, with bias increasing in φ.

Figure 7: Monte Carlo Results, Xt−1 as the Causal Variable
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Notes: The first two rows of this figure display the bias and RMSE for
ξ̂CORRECT and ξ̂LDV , and ξ̂LAGID relative to the true value of ξ based on 100
simulations of the data generating process in Figure 6 with ξ = 2 and ρ = .5.
The third row plots the frequency of Type-1 error when ξ = 0 and ρ = .5.

We also find similar results for Type 1 error, which appear in the third column of Figure

7. As before, these results indicate that with any amount of endogeneity, t-statistics from

lagged explanatory variables (either ξ̂LAGID or ξ̂LDV ) are likely to lead applied researchers
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to reject the null that ξ = 0 when the null is true. The implication of this analysis is that

even if a strong theory dictates that the causal process linkingX to Y operates with exactly

and exclusively a one-period lag, lagged independent variables do not avoid problems of

endogeneity.

5.2 Fixed Effects and GMM Estimation

The data generating processes we have entertained so far contain no sources of unob-

served unit-level heterogeneity, so we can safely use the pooled estimator to estimate β.

However, in most observational data contexts, fixed effects are necessary to account for

unobserved heterogeneity. In separate results that we do not report here, all of our find-

ings remain identical in Monte Carlo simulations that introduce unobserved unit-level

heterogeneity, accounted for using unit fixed effects. We also explore whether standard

dynamic panel data models (Arellano and Bond 1991; Blundell and Bond 1998), which use

higher order lags and differences of both X and Y as instruments for X , Xt−1, and Yt−1,

yield better results in simulations with unobserved unit-level heterogeneity. The results

of these analyses are available in Appendix 4. The summary finding is straightforward:

GMM estimation fares better than does lag identification with fixed effects in the context

of unobserved heterogeneity, but results remain biased away from zero and Type 1 errors

remain very likely.

5.3 Advanced Time-Series Estimation

There are many possible extensions that are possible in the context of time-series data:

ARIMA modeling, VAR estimation, and others. However, without either observing U or

finding an instrument for X , then estimates of β will always be biased in a lagged ex-

planatory variable model. However, our unambiguous results from above, that lagged

explanatory variables are superior to ignoring endogeneity only in cases when endogene-

ity threats and persistence in the unobservables are both small, may not hold in under
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such models. This recommends further care when using such statistical models to model

data generating processes such as those that we have considered here.

5.4 True Simultaneous Causality

Our final extension returns to the problem of simultaneous causality. Here, we show

that true simultaneous causality has different implications for the estimation of causal

effects.

Specifically, we consider the DGP in Figure 8, which is an extension of Haavelmo (1943)

(for a discussion of this model in the context of causal analysis, see Pearl forthcoming). We

incorporate into this model an instrument forX , denotedZ. Endogeneity in Figure 8 is not

Figure 8: Monte Carlo Simulations: Simultaneous Causality
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Zt

ε1t

ε1t−1Yt−1

ρ

γ

β
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φ

Notes: This is a schematic representation of our Monte Carlo simulations
where X and Y are truly “simultaneous” equations. Z serves as an instru-
ment for X whenever γ 6= 0. ε1t follows an autoregressive process in our
simulations: ε1t = φε1t−1 + η.

a function of unobserved confounders, but rather of a simultaneous causal relationship in

which Y and X directly cause one another. We use the following system of equations to
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represent this causal structure:

Yit =βXit + ε1it (10)

Xit =ρXit−1 + αYit + γZit + ε2it (11)

ε1it =φε1it−1 + ηit (12)

where 0 ≤ ρ < 1, 0 ≤ φ < 1, ε2it ∼ N(0, 5), and ηit ∼ N(0, 1).

By substituting equations (10) and (12) into (11), we can express X solely in terms of

its own lag, model parameters and errors:

Xit =
ρXit−1 + αφε1it−1 + αηit + γZit + ε2it

1− αβ
(13)

This expression reveals an important difference between the simultaneous causality case

and our results above for unobserved heterogeneity. Because Xt is a function of Yt, it is

no longer true that b̂Xt−1 will estimate βρwhen φ = 0, which was true in our discussion of

unobserved heterogeneity. We can show this by substituting (13) in (10), which yields:

Yit =
βρ

1− αβ
Xit−1 +

β(αφε1it−1 + αηit + γZit + ε2it)

1− αβ
+ ε1it (14)

The first term will reduce to βρ only when α = 0, meaning that there is no simultaneous

causation at all.

We test the performance of the following three estimators in estimating β: (i) the “naı̈ve”

estimator (β̂NAIV E) that regresses Yt on Xt and ignores simultaneity, (ii) the “lag explana-

tory variables” estimator (β̂LAGID) that regresses Yt on Xt−1, and (iii) a instrumental vari-

able estimator (β̂IV ) that employs a two-stage least squares model by using Zt as an in-

strument for Xt. The parameters for this final set of simulations are summarized in Table

3.

Our main results where γ = 10 appear in Figure 9. Instrumental variables reliably

25



Table 3: Simulation Parameters: Simultaneous Causality

Parameter Causal Pathway Simulation Values
β X → Y {3}
α Y → X {1,10}
φ ε1t−1 → ε1t {0, .1, .2,..., .9}
ρ Xt−1 → Xt {.5}
γ Zt → Xt {0,10}

estimate β in all simulations. As predicted, β̂NAIV E and β̂LAGID are consistently down-

ward biased unless there is no simultaneity (α=0); estimates of βρ are biased even when

φ = 0. (In Appendix 5 we present the case where γ = 0, in which case lag identification

only identifies βρ when φ = 0 and there is no endogeneity anyway.) The third column in

Figure 9 shows once again that lag identification leads to Type 1 error.

When endogeneity takes the form of simultaneous causality, then, the tradeoffs are

somewhat different than those described above with the unobserved confounder. Now,

when simultaneity problems are small relative to the casual effect of interest (α < β),

β̂NAIV E consistently outperforms β̂LAGID in terms of bias and efficiency (See Figure Figure

5 in comparison where the degree of bias and efficiency in β̂LAGID is less than β̂NAIV E de-

pending on the persistence of the unobservable φ). The bias and error of the lag estimator

are more comparable to those of the naive estimator when simultaneity is large.

6 Summary Recommendations

Applied researchers will find our conclusions troubling. We have shown using both

directed graphs and Monte Carlo simulations that lag identification not only fails to avoid

the identification problem without adding new assumptions, it will also lead to mislead-

ing inferences under the null hypothesis significance testing paradigm. Given the preva-

lence of lag identification in applied work, our results call for a shift in current practice.

However, our results do not imply that lagged explanatory variables are always and every-
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Figure 9: Monte Carlo Results, Simultaneous Causality
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Notes: The first two rows of this figure display the bias and RMSE for β̂IV and
β̂NAIV E relative to the true value of β, and β̂LAGID relative to the true value
of βρ, based on 100 simulations of the data generating process in Figure 8
with β = 2 and ρ = .5. The third row plots the frequency of Type-1 error
when β = 0.

where inappropriate. In this section we provide some simple guidelines for researchers seek-

ing to use them. There are several kinds of data generating processes in which lagged

explanatory variables are appropriate:

1. In the context of unobserved confounding, in which case we have shown that the

following two auxiliary assumptions are necessary:
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(a) No dynamics among unobservables U .

(b) The lagged endogenous variable X is a stationary autoregressive process.

2. In the context of no unobserved confounding, in which case one of the following

DGPs must be assumed:

(a) There is no reverse causality (Y 6→ X) and the causal effect operates with a one

period lag only (Xt−1 → Y but Xt 6→ Yt)

(b) There is reverse causality (Y → X), but reverse causality is contemporaneous

only, and the causal effect of X on Y operates with a one period lag only (see

Appendix 6 Figure A5 for one example).

(c) There is reverse causality, and the causal effect of X on Y is contemporaneous,

there are no dynamics in Y (Yt−1 6→ Yt), but there are dynamics in X (Xt−1 →

Xt) (see the Appendix Figure A6 for one example).

Our focus in this paper has been on showing why Scenario 1 does not improve estimates

of causal effects. But Scenarios 2(a), 2(b), and 2(c) are valid justifications for lagging ex-

planatory variables.13

We can look at existing research to show these insights might affect statistical models

in existing research. For example, Kelley and Simmons (2015) study “the effect of moni-

toring and ranking on state behavior” (62), arguing that U.S. human rights reports shame

countries into criminalizing human trafficking. They model their dependent variable Y

(a dummy for “whether countries criminalize human trafficking in their domestic legis-

lation”) as a function of several key explanatory variables, including whether a country

is named in the U.S. annual Trafficking in Persons Report. They are explicitly concerned

13The causal effect of Xt−1 is identified under Scenarios 2(a) and 2(b) only. See Appendix

Figure A6 for a discussion of why Scenario 2(c) does not allow for identification of causal

effects of either Xt or Xt−1 on Y .
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about reverse causality: “All explanatory and control variables are lagged to help address

reverse causality and selection issues” (62), and ask “Does the United States strategically

shame countries that are likely to criminalize anyway?” (63). This articulation of the in-

ferential threat facing their analysis is illuminating: the identification problem is not that

criminalizing human trafficking causes countries to be named in the Trafficking in Persons

Report, which would be a case of reverse causality. Rather, it is that strategic dynamics

not captured in the observables determine both criminalization and being included in

the report. In this case, the unobservables are whatever propensity to criminalize human

trafficking is not captured in the explanatory or control variables, but which also drives

U.S. scrutiny of a country’s human trafficking problem. Substantively, this may be some-

thing like activism and political pressure by D.C.-linked activists in trafficking countries.

Our design based approach suggests that lagging their key explanatory variable “to ad-

dress...selection issues” will only do so if they are willing to assume that there is a relation-

ship between being named in the U.S. annual Trafficking in Persons Report across years,

but not in those unobservables that drive U.S. scrutiny of a country’s human trafficking

problem.

For a different example, Warren (2014) tests the hypothesis that “states with high lev-

els of media accessibility will be less likely to experience the onset of civil war” (123). The

independent variable of interest is a media density index. Identification is a problem, how-

ever: “to guard against spurious results due to reverse causation, all independent variables

are lagged by one year” (126). In this case, it is theoretically possible that the onset of war

directly reduces the density of countries’ media markets. If so, then (in addition to the

assumption of selection on observables) for this lag structure to “guard against spurious

results” it must be the case either that

1. war onset only affects the density of media markets in the same year, and media

density only affect war onset with a one-year lag (Scenario 2(b)), or

2. war onset only affects the density of media markets in a single year, there are no
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dynamics in war onset, but there are dynamics in media density (Scenario 2(c))

As these examples illustrate, our theoretical results provide scholars the ability to assess

more clearly the conditions under which their choice of lagging explanatory variables will

have the effects that they desire.

Any use of lagged explanatory variables requires assumptions about the data gener-

ating process. As assumptions, these are ultimately untestable. But the two groups of

scenarios do differ in one respect: Scenarios 2(b) and 2(c), because they imply selection on

observables, do suggest falsification tests that can be used to rule out each. Each requires

only data that is already available to the analyst.

Those tests are as follows:

1. Under Scenario 2(b), it must be the case that there there is no contemporary corre-

lation between X and Y . If a regression of Yt = b1Xt + b2Xt−1 uncovers a non-zero

coefficient on b1, then the data reject Scenario 2(b) as the data generating process.

2. Under Scenario 2(c), it must be the case that there are no dynamics in Y . If a regres-

sion of Yt = bXt + λYt−1 uncovers a non-zero coefficient on λ, then the data reject

Scenario 2(c) as the data generating process.

When employing lagged explanatory variables in the context of endogeneity, following

these guidelines will help researchers to make explicit the assumptions about the data

generating process that underlies their identification strategy. Doing so, in turn, will en-

sure that research designs with lagged explanatory variables are credible.

7 Conclusion

We conclude by stepping back from the problem of statistical modeling and consider-

ing best practices in research design. When scholars suspect that endogeneity may bias

their estimates, the solution cannot arrive at the analysis stage. It must come earlier, at
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the research design stage. As Sekhon (2009) notes in a critical discussion of matching and

causal inference,

for causal inference, issues of design are of utmost importance; a lot more is

needed than just an algorithm. Like other methods, matching algorithms can

always be used, and they usually are, even when design issues are ignored in

order to obtain a nonparametric estimate from the data. Of course, in such

cases, what exactly has been estimated is unclear.

This point applies equally to our results for lagged explanatory variables. As we have

stressed, lag identification supplements the assumption of “selection on observables” with

the assumption of “no dynamics among unobservables.” We stress that this assumption of

no dynamics among unobservables could in principle be defensible. But we conclude that

without careful arguments on substantive grounds, lagged explanatory variables should

not be used for identification purposes. This may be a hard conclusion, and it may be

distressing to applied researchers, but we follow Samii (2016) in emphasizing that credible

causal claims require political scientists to “unlearn” many statistical practices that have

long been popular.

However, we recognize that tradeoffs will inevitably be made between ignoring en-

dogeneity threats and employing lagged explanatory variables in an attempt to circum-

vent them. We always recommend design-based inference, but in many applied contexts

researchers face a tradeoff between two imperfect statistical fixes. Under these circum-

stances, when is lag identification preferable to ignoring endogeneity? The answer de-

pends on the relative size of the endogeneity threat (greater or less than the causal effect

of interest), its source (unobserved confounding or simultaneity), and in the case of unob-

served confounding, persistence in the unobservables. Our discussion in this manuscript

shows that even when design-based identification of causal effects is impossible, design-

based reasoning about identification can help scholars to make informed choices about the

benefits of lag identification versus alternatives.
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Appendix 1 Complete Derivation of b̂Xt−1

In this appendix we show how to derive equation (9) in the main text.

Equation (8) reduces to

plimn→∞ b̂Xt−1 =βρ+
(βκ+ δ)Cov(Xt−1, Ut)

V(Xt−1)
(15)

=βρ+
(βκ+ δ)Cov(Xt−1, φUt−1 + νt)

V(Xt−1)

=βρ+
φ(βκ+ δ)Cov(Xt−1, Ut−1)

V(Xt−1)
+
φ(βκ+ δ)Cov(Xt−1, νt)

V(Xt−1)

=βρ+
φ(βκ+ δ)Cov(Xt−1, Ut−1)

V(Xt−1)
(16)

We found this derivation by replacing Ut with φUt−1 + νt in (15). However, we can also

rearrange (2) to express Xt−1 in terms of contemporary values Xt and Ut. Doing so, and

then substituting the resulting expression in for Xt−1 in (15), produces

plimn→∞ b̂Xt−1 =βρ+
φ(βκ+ δ)Cov(1

ρ
Xt − κ

ρ
Ut − 1

ρ
ηt, Ut)

V(Xt−1)

=βρ+ (βκ+ δ)
[ 1
ρ
Cov(Xt, Ut)

V(Xt−1)
+

κ
ρ
Cov(Ut, Ut)

V(Xt−1)
+

1
ρ
Cov(ηt, Ut)

V(Xt−1)

]
=βρ+

(βκ+ δ)
[
Cov(Xt, Ut)− κV(Ut)

]
ρV(Xt−1)

(17)

Setting the two expressions for plimn→∞ b̂Xt−1 in (16) and (17) equal to each other produces

Cov(Xt, Ut)− κV(Ut) = φρCov(Xt−1, Ut−1) (18)

By assumption, 0 ≤ ρ < 1 and 0 ≤ φ < 1. This means that both X and U are mean-

reverting series, which in turn entails that the covariance between X and U does not de-

pend on the period, orCov(Xt, Ut) = Cov(Xt−1, Ut−1) = Cov(X,U). We can therefore solve
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for Cov(X,U):

Cov(X,U)− κV(U) = φρCov(X,U)

Cov(X,U) =
κV(U)

1− φρ
(19)

We can now simplify (16) further by replacingCov(Xt−1, Ut−1)with κV (U)/(1−φρ), which

yields

plimn→∞ b̂Xt−1 =βρ+
φκ(βκ+ δ)V(U)

(1− φρ)V(X)
(20)

This result is (9) in the main text.
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Appendix 2 Additional Results, Baseline Simulations

In this appendix we provide additional simulation results for alternative values of ρ.

We begin first with the case of ρ = .1. The bias arising from lagged explanatory variables

Figure A1: Monte Carlo Results, ρ = .1
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Notes: The first two rows of this figure display the bias and RMSE for
β̂CORRECT and β̂NAIV E relative to the true value of β, and bias and RMSE
β̂LAGID relative to βρ, based on 100 simulations of the data generating pro-
cess in Figure 4 with β = 2 and ρ = .1. The third row plots the frequency of
Type-1 error when β = 0 and ρ = .1.

is even more pronounced in these simulations.

Now consider the case where ρ = .9. As before, we continue to find that the bias of the

lagged explanatory variables estimates is still significant, and still greater than the naive

estimator that ignores endogeneity altogether for sufficiently high values ofφ. Type-1 error
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Figure A2: Monte Carlo Results, ρ = .9
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Notes: The first two rows of this figure display the bias and RMSE for
β̂CORRECT and β̂NAIV E relative to the true value of β, and bias and RMSE
β̂LAGID relative to βρ, based on 100 simulations of the data generating pro-
cess in Figure 4 with β = 2 and ρ = .9. The third row plots the frequency of
Type-1 error when β = 0 and ρ = .9.

is still a major issue. Together with the results in the main text, these results demonstrate

that lagged explanatory variables avoid endogeneity problems only in the absence of dy-

namics among the unobservables, or when endogeneity is not actually a problem anyway.
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Appendix 3 DGP and Simulation Parameters, Xt−1 as the

Causal Variable

Yit =ξXit−1 + δUit + εit (21)

Xit =ρXit−1 + κUit + ηit (22)

Uit =φUit−1 + νit (23)

where we assume 0 ≤ ρ < 1, 0 ≤ φ < 1, εit ∼ N(0, 5), ηit ∼ N(0, 1), and νit ∼ N(0, 1). We

vary the parameters of ξ, δ, ρ, κ, and φ according to Table A-1.

Table A-1: Simulation Parameters, Xt−1 as the Causal Variable

Parameter Causal Pathway Simulation Values
ξ Xt−1 → Yt {0, 2}
κ Ut → Xt, Ut−1 → Xt−1 {.5, 2}
φ Ut−1 → Ut {0, .1, .2,..., .9}
δ Ut → Yt {1}
ρ Xt−1 → Xt {.5}
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Appendix 4 Fixed Effects and GMM Simulations

We estimate these models using the pgmm estimator implemented in the plm library in R.

We use the second and third lags ofX and Y as instruments, and estimate models in which

we condition onXt (β̂ABOND1) as well as models in which we condition onXt−1 (β̂ABOND2).

We compare these results to a lag identification model with fixed effects, implemented

using the "within" estimator in plm. Note that when k = 2, β̂ABOND2 approaches the true

Figure A3: Monte Carlo Results, Fixed Effects and GMM
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Notes: The first two rows of this figure display the bias and RMSE for
β̂ABOND1 relative to the true value of β, and β̂ABOND2, and β̂LAGID relative
to the true value of βρ based on 100 simulations with β = 2 and ρ = .5. The
third row plots the frequency of Type-1 error when β = 0 and ρ = .5.

value of βρ as φ grows larger. This is an incidental result stemming from the fact that β = κ

in this model, and it does not appear for larger values of κ.
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Appendix 5 Simultaneous Causation when γ = 0

When γ = 0, there is no instrumental variables strategy available to estimate β. Lag

identification only performs well in this case when φ = 0 and there is no reverse causality.

In other cases, whether or not lag identification performs better than the naive estimator

that ignores endogeneity altogether depends on the relative size of α and β.

Figure A4: Monte Carlo Results, Simultaneous Causality
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Notes: The first two rows of this figure display the bias and RMSE for β̂NAIV E
relative to the true value of β, and β̂LAGID relative to the true value of βρ,
based on 100 simulations of the data generating process in Figure 8 with
β = 2 and ρ = .5. The third row plots the frequency of Type-1 error when
β = 0.
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Appendix 6 Valid Data Generating Processes

Figure A5: Scenario 2(b)
Xt−1 XtXt−2

YtYt−1Yt−2
Notes: This is a representation of a data generating process in which reverse
causality exists (Yt → Xt) but the causal effect of Xt−1 on Y is identified
because Xt 6→ Yt.

Figure A6: Scenario 2(c)
Xt−1

Xt Yt

Yt−1

Notes: This is a representation of a data generating process in which reverse
causality exists (Yt → Xt) but a “conservative” effect of Xt−1 on Y is identi-
fied because Yt−1 6→ Yt. To be clear, however, neither the direct effect ofXt on
Yt nor the total effect of Xt−1 on Yt is identified because of the simultaneous
relationship between X and Y .
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