## Causal Inference with Observational Data 5. Regression Discontinuity

Marc F. Bellemare

May 2018

© Marc F. Bellemare, 2018 5. Regression Discontinuity

#### Introduction

As with almost everything else we will do in this class, the question of interest is this:

What is the effect of a treatment (often some program) D on a given outcome y?

The difference between this topic and the other topics covered in this class is that I do not have first-hand experience with regression discontinuity (RD) designs. As such, these lecture notes were first drafted by my doctoral student Camilo Bohorquez-Peñuela, who gave the RD lecture in my class as a guest lecturer two years ago.

#### Introduction

In an RD design, broadly speaking, we know the "rule" assigning an observation to treatment or control, and we have some score sthat determines that assignment.

For instance, you may be interested in the effect of a private Catholic education D on wage y. If admission to private Catholic schools is determined by an admissions test whose score is s and you know the admission threshold (e.g., 60 percent),

#### Introduction

An RD estimates the treatment effect using a more precise knowledge of assignment rules:

- Treatment is determined—at least in part—by a continuous assignment variable s.
- There is a discontinuity in treatment status (i.e., D goes from 0 to 1) at the cutoff point s = c.
- Observations around the threshold are assumed to be identical except for treatment status—observable characteristics x do not vary around c, like a balancing test in an RCT.
- Units cannot manipulate the assignment mechanism.

## Perfect Compliance

Treatment is such that D = 1 if  $s \ge c$  and D = 0 if s < c. With full compliance, we have what's called a sharp RD:

1. 
$$P(D = 1 | s \ge c) = 1$$
 and  $P(D = 1 | s < c) = 0$ .

- 2. Treatment is a deterministic function of the assignment (or running, or forcing) variable, and
- 3. There is no s for which some  $D_i = 1$  and some  $D_i = 0$ .

For instance, grad school funding might be determined only by GRE scores, and we can look at whether grad school funding has an impact on student performance.

## Imperfect Compliance

In this case, we have what's called a fuzzy RD.

- 1.  $0 < P(D = 1 | s \ge c) = 1 P(D = 1 | s < c) = 0$  for a given c.
- 2. Treatment status is not completely determined by the assignment variable. A fuzzy RD exploits the discontinuity in the probability of treatment, conditional on covariates.

For instance, grad school funding is determined by GRE scores and unobservable factors (e.g., admissions committee preferences, letters of recommendation content, etc.), and we can look at whether grad school funding has an impact on student performance.

## Sharp RD

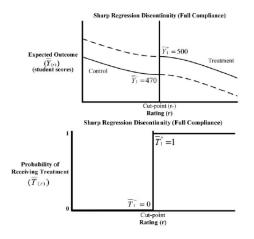



Figure: Source: Bloom (2012).

э

(日) (同) (三) (三)

## Fuzzy RD

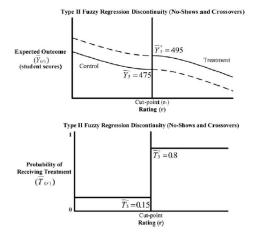



Figure: Source: Bloom (2012).

э

<ロト <部ト < 注ト < 注ト

## Sharp RD

A sharp RD is a kind of selection on observables design.

Validity, however, is not given by an overlap of covariate values among treatment and control groups (at least in the vicinity of the cutoff point), as in matching.

A rich set of controls can help control for endogeneity from other sources.

## Sharp RD—Interpreting Estimates

Discontinuity of the outcome at the cutoff point implies an average effect of the ITT.

In a sharp RD, however, assignment to treatment is the same as receiving the treatment.

Thus, estimates around the threshold correspond to ATE for the treated and imply a LATE.

The assumption here is that the expected outcome is a continuous function of the running variable around the cutoff point.

Suppose the outcome can be described by the following linear, constant effect model:

$$E(y_{0i}|s_i) = \alpha + \beta s_i \tag{1}$$

and

$$y_{1i} = y_{0i} + \rho,$$
 (2)

where  $\rho$  represents the treatment effect. Then, estimation of the following by OLS yields the causal effect  $\rho$ :

$$y_i = \alpha + \beta s_i + \rho D_i + \epsilon_i. \tag{3}$$

What if  $E(y_i|s_i)$  is nonlinear? Then,

1. Estimate  $y_i = f(s_i) + \rho D_i + \epsilon_i$ , where  $f(s_i)$  is a continuous function of  $s_i$  at the cutoff point.

2. 
$$f(s_i)$$
 is an  $N^{\text{th}}$ -order polynomial.

3. 
$$y_i = \alpha + \sum \beta_j s_i^j + \rho D_i + \epsilon_i$$
.

If the functional form differs on both sides of the cutoff point, you can introduce interaction terms between D and distance from the cutoff.

Note, however, that in a recent article, Gelman and Imbens (*JBES*, forthcoming), write:

We argue that controlling for global high-order polynomials in regression discontinuity analysis is a flawed approach with three major problems: it leads to noisy estimates, sensitivity to the degree of the polynomial, and poor coverage of confidence intervals. We recommend researchers instead use estimators based on local linear or quadratic polynomials or other smooth functions.

The estimation of a sharp RD thus generalizes to

$$E(y_i|s_i) = \underbrace{E(y_{0i}|s_i)}_{\text{Average Behavior}} + \underbrace{\{E(y_{1i}|s_i) - E(y_{0i}|s_i)\} D_i}_{\text{Average Effect}}, \quad (4)$$

and so

$$y_{i} = \beta_{01}\widetilde{s}_{i} + \ldots + \beta_{0j}\widetilde{s}_{i}^{j} + \rho D_{i} + \beta_{1}^{*}D_{i}\widetilde{s}_{i} + \ldots + \beta_{j}^{*}D_{i}\widetilde{s}_{i}^{j} + \epsilon_{i}, \quad (5)$$

where  $\rho$  is the treatment effect at the cutoff and  $\tilde{s}_i = s_i - c$ .

In the preceding slide:

- The treatment effect at the cutoff is  $\rho$ .
- The treatment effect at point s is  $\rho + \beta_1^* s + ... + \beta_i^* s$ .

Under a parametric (i.e., OLS) approach, validity comes from the adequate selection of the functional form representing the causal effect.

- No room for agnostic approaches regarding the functional form,
- Nonparametric approaches could ease the problem, but at the cost of less efficiency ("the curse of dimensionality"),
- Importance of visual evidence.

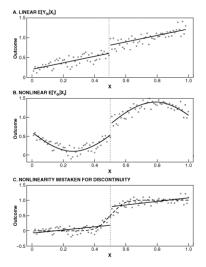



Figure: Different Functional Forms.

Compare averages in a small neighborhood of the discontinuity:

- Approaches: Kernel, local linear weighted regression
- Problem: Incorrect bandwidths imply biased estimators
- Another problem: Small bandwidths imply less efficiency
- There are some techniques to select the "right" bandwidth; see Lee and Lemieux (2010)
- Anyway, they help to provide visual evidence

## Fuzzy RD

Imperfect compliance allows exploiting treatment assignment as an IV for treatment, unlike deterministic assignment under a sharp RD.

- Hahn et al. (2001), Imbens and Lemieux (2008), Angrist and Pischke (2009), and Lee and Lemieux (2010) explain and demonstrate that under fuzzy RD, full exogeneity of the running variable is no longer required.
- That external manipulation of the running variable resembles a randomized experiment.
- Still, an assumption is made regarding balancing across observations around the cutoff point remains.
- Moreover, we still assume that units cannot manipulate the running variable themselves.

#### Fuzzy RD—Parametric Estimation

$$P(D_i = 1 | s_i) = \begin{array}{c} g_1(s_i) \text{ if } s_i \geq c \\ g_0(s_i) \text{ if } s_i < c \end{array}$$
(6)

such that

$$E(D_i|s_i) = g_0(s_i) + [g_1(s_i) - g_0(s_i)]T_i$$
(7)

where  $T_i = I(s_i \ge c)$ .  $E(D_i|s_i)$  is the first-stage equation of the 2SLS system where  $T_i$  is the IV. Interpreting the parameter, we get a LATE only at  $s_i = c$ , and only for the compliers. Pretty limited!

- Determine whether you actually have an RD.
- Determine whether your RD is sharp or fuzzy.
- Graph y vs. s with a smoothing tool, and visually inspect it.
- Also graph a histogram of s and inspect any discontinuity around the threshold to assess whether there was manipulation of s.
- Remember that RD is invalid if units can manipulate s in order to receive or avoid treatment!

## Tips

- Begin with nonparametric methods
- Nonparametrics are not the solution—they provide good visual evidence about which nonlinearities to incorporate in parametric estimations
- Use the simplest specification possible, and exploit complexity when conducting robustness checks.
- Conduct a parallel RD analysis on baseline covariates, like a balancing test.
- Sharp RD yields LATE at s<sub>i</sub> = 0 with full compliance; fuzzy RD yields late at s<sub>i</sub> = 0 only, and only for compliers.
- All versions of RD have low external validity.

Question: What is the effect of a subsidized health care regime on financial risk protection, use of health care services, and self-reported health care conditions among Colombian households?

Subsidized regime (SR) eligibility based on household well-being conditions measured by a proxy means test.

- SISBEN score: Categorization of households not only based on their income, but also on socio-demographic characteristics (e.g., dwelling, durable goods, employment, schooling)
- SISBEN is in (0, 100), with a low SISBEN meaning a poorer household.
- SISBEN also determines eligibility for other publicly provided welfare programs.

Participation in the SR is subject to self-selection and political manipulation.

- Researchers cannot observe SISBEN, but know the algorithm, so they estimate a synthetic score using independent data (2003 Living Standards Survey and 2005 DHS)
- This synthetic score is not subject to manipulation by the households, but may suffer from measurement error
- Due to financial constraints, some municipalities used different cutoffs for determining eligibility so the authors follow Chay et al. (2005) in order to estimate municipality-specific thresholds

Identification strategy:

- IV is a dummy variable for whether the household's SISBEN is below the cutoff
- IV seeks to correct for self-selection and for manipulation of the assignment process by politicians (unobserved heterogeneity).
- Reverse causality seems not to be a problem

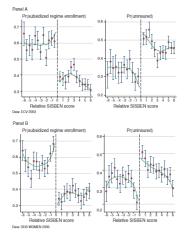



FIGURE 1. SUBSIDIZED REGIME ENROLLMENT AND 'UNINSURANCE' ACROSS SISBEN ELIGIBILITY THRESHOLDS

#### Figure: Probability of Enrollment in the SR Around the Cutoff.

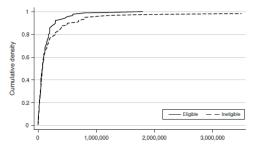
| Panel A Outcome                                         | Household<br>head age | Household<br>head age |                   | Completed<br>elementary<br>school |                   | Completed<br>secondary<br>school | head<br>completed | Household<br>head<br>completed<br>elementary<br>school |
|---------------------------------------------------------|-----------------------|-----------------------|-------------------|-----------------------------------|-------------------|----------------------------------|-------------------|--------------------------------------------------------|
| 2SLS estimate, subsidized<br>regime enrollment          | 4.38<br>[3.05]        | 3.05<br>[7.68]        | 0.01<br>[0.08]    | -0.15<br>[0.10]                   | 0.03<br>[0.07]    | 0.05                             | -0.09<br>[0.12]   | -0.37<br>[0.24]                                        |
| Intent-to-treat estimate                                | 1.77<br>[1.22]        | 0.79<br>[1.84]        | 0.01<br>[0.03]    | -0.04**<br>[0.02]                 | 0.01<br>[0.03]    | 0.01                             | -0.04<br>[0.05]   | -0.10**<br>[0.05]                                      |
| First stage estimate,<br>below eligibility threshold    | 0.40***<br>[0.04]     | 0.26+++               | 0.40***<br>[0.04] | 0.25***                           | 0.40***<br>[0.04] | 0.25***                          | 0.40***<br>[0.04] | 0.26***<br>[0.07]                                      |
| First stage F-statistic                                 | 125.75                | 14.08                 | 125.91            | 17.02                             | 125.91            | 17.02                            | 125.75            | 14.08                                                  |
| OLS estimate                                            | -0.04<br>[0.66]       | 1.62***<br>[0.55]     | 0.00<br>[0.01]    | 0.00<br>[0.01]                    | -0.01<br>[0.02]   | -0.01<br>[0.01]                  | 0.02<br>[0.02]    | -0.01<br>[0.02]                                        |
| Mean for those not enrolled in<br>the subsidized regime | 47.36                 | 45.71                 | 0.18              | 0.18                              | 0.21              | 0.08                             | 0.29              | 0.27                                                   |
| Observations                                            | 3,334                 | 4,222                 | 3,333             | 3,764                             | 3,333             | 3,764                            | 3,334             | 4,222                                                  |
| Data source                                             | DHS                   | ECV                   | DHS               | ECV                               | DHS               | ECV                              | DHS               | ECV                                                    |

TABLE 2-BALANCE ACROSS ELIGIBILITY THRESHOLDS

#### Figure: Balance Across Eligibility Thresholds.

(日) (同) (三) (三)

э


Panel B

| Outcome                                                 | Household<br>head<br>completed<br>secondary<br>school | head              | Student<br>received<br>school<br>grant | Benefits to<br>buy house | Attended<br>training | Household<br>in Hogar<br>Comunitario<br>Program | Services<br>from<br>Bienestar<br>Familiar |
|---------------------------------------------------------|-------------------------------------------------------|-------------------|----------------------------------------|--------------------------|----------------------|-------------------------------------------------|-------------------------------------------|
| 2SLS estimate, subsidized<br>regime enrollment          | -0.02<br>[0.03]                                       | -0.04<br>[0.07]   | -0.06<br>[0.11]                        | 0.02<br>[0.01]           | 0.01<br>[0.04]       | 0.03<br>[0.08]                                  | -0.04<br>[0.13]                           |
| Intent-to-treat estimate                                | -0.01<br>[0.01]                                       | -0.01<br>[0.02]   | -0.01<br>[0.02]                        | 0.00++<br>[0.00]         | 0.00<br>[0.01]       | 0.01<br>[0.02]                                  | -0.01<br>[0.03]                           |
| First stage estimate,<br>below eligibility threshold    | 0.40***<br>[0.04]                                     | 0.26***<br>[0.07] | 0.21***<br>[0.09]                      | 0.26***<br>[0.07]        | 0.27***<br>[0.06]    | 0.26***                                         | 0.26***<br>[0.07]                         |
| First stage F-statistic                                 | 125.75                                                | 14.08             | 5.17                                   | 14.08                    | 23.45                | 14.08                                           | 14.08                                     |
| OLS estimate                                            | 0.01*<br>[0.01]                                       | 0.01<br>[0.01]    | 0.03<br>[0.02]                         | 0.00**<br>[0.00]         | -0.02***<br>[0.00]   | 0.01<br>[0.01]                                  | 0.02<br>[0.02]                            |
| Mean for those not enrolled<br>in the subsidized regime | 0.02                                                  | 0.01              | 0.05                                   | 0.00                     | 0.06                 | 0.09                                            | 0.16                                      |
| Observations                                            | 3,334                                                 | 4,222             | 1,305                                  | 4,222                    | 3,010                | 4,222                                           | 4,222                                     |
| Data source                                             | DHS                                                   | ECV               | ECV                                    | ECV                      | ECV                  | ECV                                             | ECV                                       |

#### Figure: Balance Across Eligibility Thresholds (cont'd).

伺 ト イヨト イヨト

э





#### Figure: Discontinuity of Outcomes.

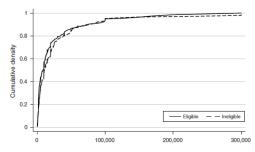



FIGURE 4. INDIVIDUAL OUTPATIENT MEDICAL SPENDING (Among Those within Two Points of County-Specific Eligibility Thresholds)

Figure: Discontinuity of Outcomes (con'd)

| Panel A. Risk protection                                |                                                |                                                 |                                                                  |                                                                   |
|---------------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|
| Outcome                                                 | Individual<br>inpatient<br>medical<br>spending | Individual<br>outpatient<br>medical<br>spending | Variability<br>of individual<br>inpatient<br>medical<br>spending | Variability<br>of individual<br>outpatient<br>medical<br>spending |
| 2SLS estimate, subsidized<br>regime enrollment          | -58,870*<br>[33,263]                           | 3,562<br>[2,702]                                | -67,499.38**<br>[32,906]                                         | 167.57<br>[2,417]                                                 |
| Intent-to-treat estimate                                | -15,108*<br>[8,888]                            | 918.23<br>[821]                                 | -1,7322.90*<br>[9,120]                                           | 43.20<br>[626]                                                    |
| First stage estimate, below<br>eligibility threshold    | 0.26***                                        | 0.26*** [0.07]                                  | 0.26*** [0.07]                                                   | 0.26*** [0.07]                                                    |
| First stage F-statistic                                 | 13.91                                          | 14.01                                           | 13.91                                                            | 14.01                                                             |
| OLS estimate                                            | -5,655<br>[3,898]                              | -1,204***<br>[342]                              | -13,888***<br>[3,893]                                            | -4,387***<br>[357]                                                |
| Mean for those not enrolled<br>in the subsidized regime | 11,359.86                                      | 2,512.98                                        | 2,6338.40                                                        | 7,342.59                                                          |
| Observations                                            | 4,219                                          | 4,218                                           | 4,219                                                            | 4,218                                                             |
| Data source                                             | ECV                                            | ECV                                             | ECV                                                              | ECV                                                               |

TABLE 3-RISK PROTECTION AND PORTFOLIO CHOICE

- 《圖》 《문》 《문》

æ

| Panel B. Portfolio choice                               |                                     |                                    |                              | _                               |                   |                   |
|---------------------------------------------------------|-------------------------------------|------------------------------------|------------------------------|---------------------------------|-------------------|-------------------|
| Outcome                                                 | Individual<br>education<br>spending | Household<br>education<br>spending | Total<br>spending<br>on food | Total<br>monthly<br>expenditure | Has<br>car        | Has<br>radio      |
| 2SLS estimate, subsidized<br>regime enrollment          | -341.68<br>[3,781]                  | 30,366<br>[25,055]                 | 32,136<br>[103,540]          | -33,826<br>[278,060]            | 0.01<br>[0.04]    | 0.17<br>[0.11]    |
| Intent-to-treat estimate                                | -84.72<br>[945]                     | 7,815<br>[4,880]                   | 8,709<br>[28,491]            | -14,036<br>[115,736]            | 0.01<br>[0.01]    | 0.07<br>[0.05]    |
| First stage estimate, below<br>eligibility threshold    | 0.25***<br>[0.06]                   | 0.26***<br>[0.07]                  | 0.27***<br>[0.06]            | 0.41***<br>[0.12]               | 0.40***<br>[0.04] | 0.40***<br>[0.04] |
| First stage F-statistic                                 | 19.28                               | 14.08                              | 18.80                        | 12.18                           | 125.75            | 125.75            |
| OLS estimate                                            | 122.82<br>[231]                     | 2,952.32***<br>[902]               | -12,036<br>[10,330]          | -39,273<br>[58,730]             | -0.01<br>[0.01]   | 0.03<br>[0.02]    |
| Mean for those not enrolled<br>in the subsidized regime | 7,501                               | 34,089                             | 279,128                      | 688,065                         | 0.03              | 0.60              |
| Observations                                            | 3,567                               | 4,222                              | 4,096                        | 966                             | 3,334             | 3,334             |
| Data source                                             | ECV                                 | ECV                                | ECV                          | ECV                             | DHS               | DHS               |

#### Panel B. Portfolio choice

<ロト <部ト < 注ト < 注ト

æ

|                                                         | Use of pre                       | ventive care                                    | Health status (children)         |                              |                       |                     |  |
|---------------------------------------------------------|----------------------------------|-------------------------------------------------|----------------------------------|------------------------------|-----------------------|---------------------|--|
| Outcome                                                 | Preventive<br>physician<br>visit | Number of<br>growth dev.<br>checks last<br>year | Child days<br>lost to<br>illness | Cough,<br>fever,<br>diarrhea | Any health<br>problem | Birthweight<br>(KG) |  |
| 2SLS estimate, subsidized<br>regime enrollment          | 0.29***<br>[0.11]                | 1.50**<br>[0.69]                                | -1.40**<br>[0.65]                | -0.18<br>[0.17]              | -0.06<br>[0.18]       | 0.26<br>[0.29]      |  |
| Intent-to-treat estimate                                | 0.08***<br>[0.03]                | 0.55**<br>[0.25]                                | -0.49**<br>[0.20]                | -0.07<br>[0.06]              | -0.02<br>[0.06]       | 0.11<br>[0.12]      |  |
| First stage estimate,<br>below eligibility threshold    | 0.26***<br>[0.07]                | 0.36***<br>[0.07]                               | 0.35***<br>[0.07]                | 0.37***<br>[0.07]            | 0.35***<br>[0.07]     | 0.41***<br>[0.09]   |  |
| First stage F-statistic                                 | 14.08                            | 25.24                                           | 23.46                            | 25.19                        | 23.46                 | 19.10               |  |
| OLS estimate                                            | 0.17***<br>[0.01]                | 0.33***<br>[0.12]                               | -0.04<br>[0.17]                  | 0.01<br>[0.04]               | 0.03<br>[0.04]        | 0.04<br>[0.05]      |  |
| Mean for those not enrolled<br>in the subsidized regime | 0.39                             | 1.00                                            | 0.65                             | 0.56                         | 0.64                  | 3.25                |  |
| Observations                                            | 4,222                            | 1,167                                           | 1,161                            | 1,167                        | 1,161                 | 897                 |  |
| Data source                                             | ECV                              | DHS                                             | DHS                              | DHS                          | DHS                   | DHS                 |  |

TABLE 4-USE OF PREVENTIVE MEDICAL CARE AND HEALTH STATUS

<ロ> <同> <同> < 同> < 同>

æ

Robustness checks:

- Different bandwidths
- Higher-order polynomials of the simulated SISBEN score
- Excluding municipality FEs
- Nonparametric local linear regressions

Parameter signs are robust to different specifications, with changes in magnitudes and precision.

External validity:

- Miller et al. acknowledge that their results lack external validity
- However, they exploit heterogeneity in thresholds (remember, they calculated them at the municipality level) in order to run second-stage equation including interaction between absolute SISBEN score and SR enrollment
- They found no statistical significance—standard errors on the interaction terms are large