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Abstract 

 

Lagged explanatory variables are commonly used as instrumental variables (IVs) to 
address endogeneity concerns in empirical studies with observational data. Few 
theoretical studies, however, address whether those “lagged IVs” mitigate endogeneity. 
We develop a generic model in which dynamics among the endogenous explanatory 
variable and the unobserved confounders cannot be ruled out, and look analytically at 
the endogeneity of lagged IV estimates. We then use Monte Carlo simulations to 
illustrate our analytical findings. We show that when lagged IVs violate only the 
independence assumption, the lagged IV method mitigates endogeneity. When lagged 
IVs violate both the independence assumption and the exclusion restriction, the lagged 
IV method cannot mitigate endogeneity—and may even aggravate the problem. Both 
scenarios result in the likelihood of Type I close to one. 
 
Keywords: Endogeneity, Instrumental Variables, Lagged variables, Treatment Effects, 
Causal Inference 

 

 

 

 

 

 

 

 

 

                                            
* We thank John Freeman, Paul Glewwe, and Steve Miller for valuable comments and suggestions. All 
remaining errors are ours. 
† Wang: Corresponding Author, Department of Applied Economics, University of Minnesota, email: 
wang5979@umn.edu. 
‡ Bellemare: Department of Applied Economics, University of Minnesota, email: mbellema@umn.edu. 

mailto:wang5979@umn.edu
mailto:mbellema@umn.edu


 2 

I. INTRODUCTION 

 

To address endogeneity concerns in empirical studies with observational data, it is not 

uncommon for researchers use the lag of an endogenous variable as an instrumental 

variable (IV) for endogenous variable. This strategy, which we will refer to as “lagged 

IV” throughout this paper, is popular among applied researchers because it requires no 

other variable as IV, which are notoriously difficult to find.  

Though many researchers would readily admit that lagged variables may not be 

proper IVs because they are not strictly exogenous, it is often argued that lagged 

variables might alleviate endogeneity, at least to some extent (Anderson and Hsiao, 

1981; Todd and Wolpin, 2003). Few formal theoretical analyses have been conducted 

to discuss whether the lagged IV method reduces the threat of endogeneity, however, 

and so applied researchers have little guidance regarding the conditions under which 

the lagged IV method could alleviate endogeneity concerns. 

We analytically study the validity of the lagged IV method in response to 

endogeneity concern and present simulation results to illustrate our analytical results. 

We find that when the lagged IV neither has a direct causal impact on the outcome 

variable nor on the unobserved confounder, it only violates the independence 

assumption, but not the exclusion restriction, which are both necessary for the local 

average treatment effect (LATE) theorem to hold (Imbens and Angrist 1994; Angrist et 

al., 1996). In this case, the lagged IV estimate only consists of the restricted local 

average treatment on the treated (ATT). Comparatively, the naïve OLS estimate—one 

which ignores endogeneity concerns—consists of both the ATT plus some bias due to 

selection. As a result, when the lagged IV only violates the independence assumption, 

its estimate could be less biased than that of a naïve OLS estimate. In other words, the 

lagged IV method could serve to mitigate the endogeneity problem. 

When the lagged IV has direct causal impact either on the outcome variable, on the 

unobserved confounder, or both, it violates not only the independence assumption, but 

also the exclusion restriction. In these three cases, the lagged IV estimate consists of 

both the relaxed local ATT and the local selection bias. Comparatively, the naïve OLS 

estimate consists once again of both the ATE plus some bias due to selection. As a result, 

when the lagged IV violates both the independence assumption and the exclusion 

restriction, its estimate may aggravate the endogeneity problem.  
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We set up a general model to compare the naïve OLS estimate with the lagged IV 

estimate. In our model, the outcome variable is determined both by an endogenous 

explanatory variable, an unobserved confounder, and (perhaps) the lagged explanatory 

variable. The explanatory variable is determined by its one-order lagged term and also 

the unobserved confounder; in addition, the unobserved confounder has a positive serial 

correlation and may also be influenced by the lagged explanatory variable.  

With this general model, we discuss four scenarios. In Scenario 1, the lagged 

explanatory variable has no direct causal effect on the outcome variable or on the 

unobserved confounder. Therefore, Scenario 1 only violates the independence 

assumption. In Scenario 2, the lagged explanatory variable has a direct causal effect on 

the outcome variable. In Scenario 3, the lagged explanatory variable has a direct causal 

effect on the unobserved confounder. And in Scenario 4, the lagged explanatory 

variable has direct causal effects on both. Therefore, Scenarios 2, 3 and 4 violate both 

the independence assumption and the exclusion restriction. 

  In line with our analytical analysis, our simulation results show that in Scenario 1, (i) 

both the naïve OLS estimate and the lagged IV estimate are biased, but the bias of the 

lagged IV estimate is smaller than that of the naïve OLS estimate, (ii) both the naïve 

OLS estimate and the lagged IV estimate are consistent, (iii) the larger the extent to 

which the independence assumption is violated, the higher bias of the lagged IV 

estimate, (iv) root mean squared errors (RMSEs) show similar patterns as the biases, 

and (v) the likelihood that the lagged IV estimate suffers from the Type I error is very 

high close to 1. In other words, when only the independence assumption is violated, the 

lagged IV method is acceptable as its estimate is consistent, it mitigates bias from 

endogeneity some relative to the naïve OLS estimate, yet it remains problematic 

because of its very high likelihood of Type I error. 

  In Scenarios 2, 3 and 4, our simulation results show that, (i) both the naïve OLS 

estimate and the lagged IV estimate are biased, and the bias of the lagged IV estimate 

is smaller than that of the naïve OLS estimate, and (ii) both the naïve OLS estimate and 

the lagged IV estimate are inconsistent. In Scenarios 2 and 4, the lagged IV estimate is 

more inconsistent than the naïve OLS estimate; in Scenario 3, which estimator is the 

most consistent is ambiguous. Further, (iii) the larger the extent to which the exclusion 

restriction is violated, the higher the bias of the lagged IV, (iv) the RMSEs show similar 

patterns as the biases, and (v) the likelihood that the lagged IV estimate suffers from a 

Type I error is very high, and very close to 1. In others word, when violating both the 



 4 

independence assumption and the exclusion restriction, the lagged IV method yields an 

inconsistent estimate, and it can even aggravate endogeneity issues by increasing bias 

relative to a naïve OLS, and it also suffers from a very high likelihood of a Type I error. 

  Blundell and Bond (1998, 2000) have argued that because lagged explanatory 

variables are weakly correlated with the endogenous explanatory variable’s first 

difference, GMM combined with lagged explanatory variables may not solve 

endogeneity problems. Our analysis focuses on using a one-order lagged explanatory 

variable as a single IV in estimation, a strategy that is is commonly used in empirical 

studies. Rossi (2014) argues in passing against using lagged explanatory variable as IV, 

but he does not provide precise derivations for why that is. Our findings, based on 

analytical and simulation results, are consistent with the previous literature. For applied 

researchers in the social sciences, our findings provide show that lagged IV method 

cannot obviate (and are likely to worsen) the consequences of endogeneity. 

  Before anything else, to see how common the lagged IV method is, we examine all 

articles published in the top general academic journals in economics and political 

science. We identify those articles using the lagged IV method by searching the text of 

each paper for the key words such as “lag,” “lagged,” or “lagging,” and then seeing 

whether those papers used lagged endogenous variables as instrumental variables for 

those same endogenous variables. We do not discriminate between those papers where 

lagged explanatory variables are used as instrumental variables either as the main 

method or as a robustness check for the main results. 

  Table 1 shows, for the period 2013-2018, the number of papers using the lagged IV 

method, published in economic journals including the American Economic Review, 

Econometrica, the Journal of Political Economy, the Quarterly Journal of Economics, 

the Review of Economic Studies, and the Review of Economics and Statistics, and in 

political science journals including the American Political Science Review, the 

American Journal of Political Science, the British Journal of Political Science, 

Comparative Political Studies, and the Journal of Politics. In total, we find 31 papers 

in 2013-2018 using the lagged IV method, of which 19 in economics and 12 in political 

science journals. Narrowing the time period down to 2015-2018, 15 papers use the 

lagged IV method, of which nine in economics and 6 in political science journals.  

  These papers all use at least one first-order lagged (or first-order and multi-ordered 

lagged) explanatory variable(s) as instrumental variables to alleviate endogeneity 

concerns. Most papers mention that the availability of lagged explanatory variables is 
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one of the key reasons why they are used as the IV. Seldom do those papers discuss 

whether the lagged explanatory variable has an explicit direct causal effect on the 

outcome variable—that is, whether the lagged IV violates the exclusion restriction, 

which makes the use of lagged IV methods more questionable. This literature review 

shows that the use of lagged IVs is not uncommon in economics and political science, 

and that authors of those papers using lagged IVs (act as if they) believe that although 

the lagged IV method is not perfect, it may somewhat mitigate endogeneity concerns. 

  The rest of this paper is organized as follows. Section II discusses the treatment 

effects of both the naïve OLS estimation and lagged IV estimation. Section III derives 

the biasedness and inconsistency of both estimations analytically. Section IV presents 

simulation results which illustrate and support our analytical results. Section V 

summarizes with directions for future research and recommendations for applied 

research. 

 

II. TREATMENT EFFECTS 

  This section discusses the treatment effects in lagged IV estimation and in OLS 

estimation, and upon which compares their sources of endogeneity. In OLS estimation, 

lacking the ideal randomized experiment yields the selection bias that obstructs the 

identification of the ATT that we are interested in. In lagged IV estimation, violating 

the LATE theorem (Angrist and Pischke, 2009) results in the estimate different from 

the LATE that we are interested in.  

  We find that due to the synchronous relationship between the lagged IV and the 

unobserved confounder, the lagged IV estimation violates the independence assumption 

in the LATE Theorem. As a result, the lagged IV estimate suffers from endogeneity, of 

which the extent is ambiguous to that of the naïve OLS estimate. We also find that if 

the lagged IV causes the outcome variable not only through the explanatory variable 

but also through the unobserved confounder, the lagged IV violates the exclusion 

restriction in addition to the independence assumption in the LATE Theorem. As a 

result, the lagged IV estimate suffers more endogeneity than the naïve OLS estimate.  

 

II.A. Setup  

  Empirically there are three reasons why the lagged explanatory variable may serve 

as a valid IV. Regarding the relevance restriction, autocorrelation in the explanatory 

variable implies that the endogenous variable is, to some extent, correlated with its lag. 
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Regarding the exclusion restriction, it is possible—at least in theory—that no causal 

relationship exists between the lagged explanatory variable and the outcome variable. 

Regarding data availability, the lagged IV method typically requires no additional data 

(at least not in longitudinal data sets), and the inherent statistical power issue that may 

arise from burning up one round of data due to lagging is less and less of a problem 

given the increasing availability of long panel data sets.4 

  In the case of the unobserved confounder, however, if there is autocorrelation both 

in the explanatory variable and in the unobserved confounder, the lagged explanatory 

variable could be correlated with the unobserved confounder in the current period 

through the lagged unobserved confounders, which would lead to biased estimates. To 

explain this, suppose that the structural model is such that 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝛿𝛿𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖, (2.1) 

where 𝑌𝑌𝑖𝑖𝑖𝑖,𝑋𝑋𝑖𝑖𝑖𝑖,𝑋𝑋𝑖𝑖,𝑡𝑡−1,𝑈𝑈𝑖𝑖𝑖𝑖 , and 𝜖𝜖𝑖𝑖𝑖𝑖  respectively denote the outcome variable, the 

explanatory variable, the lagged explanatory variable, the unobserved confounder, and 

an error term with mean zero, and where 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑖𝑖𝑖𝑖,𝑈𝑈𝑖𝑖𝑖𝑖) ≠ 0, so that there is indeed an 

identification problem. If 𝜉𝜉 ≠ 0, the lagged explanatory variable has a direct impact 

on the outcome variable; otherwise it has obviously no such impact. 

  The autocorrelation function of explanatory variable is such that  

𝑋𝑋𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝜅𝜅𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖 . (2.2) 

  The autocorrelation function of unobserved confounder is such that 

𝑈𝑈𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑈𝑈𝑖𝑖,𝑡𝑡−1 + 𝜓𝜓𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝜈𝜈𝑖𝑖𝑖𝑖. (2.3) 

If 𝜓𝜓 ≠ 0 , the lagged explanatory variable has a direct impact on unobserved 

confounder; otherwise there is no such impact.  

  We thus have four scenarios: 

  Scenario 1: 𝜉𝜉 = 0, and 𝜓𝜓 = 0. In this scenario, the lagged explanatory variable has 

no explicit impact on the outcome variable, nor does it have any explicit impact on the 

unobserved confounder. 

  Scenario 2: 𝜉𝜉 ≠ 0, while 𝜓𝜓 = 0. In this scenario, the lagged explanatory variable 

has a direct impact on the outcome variable, but it has no explicit impact on the 

unobserved confounder. 

  Scenario 3: 𝜉𝜉 = 0, while 𝜓𝜓 ≠ 0. In this scenario, the lagged explanatory variable 

                                            
4 For this reason, we ignore that issue in the remainder of this paper. 
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has no explicit impact on the outcome variable, but it has a direct impact on the 

unobserved confounder. 

  Scenario 4: 𝜉𝜉 ≠ 0, and 𝜓𝜓 ≠ 0. In this scenario, the lagged explanatory variable has 

a direct impact on the outcome variable, and it also has a direct impact on the 

unobserved confounder.  

  In light of the LATE theorem (Angrist and Pischke, 2009), we discuss the lagged IV 

estimate. For simplicity, and without any loss of generality, we assume a binary 

explanatory variable. We denote 𝑌𝑌𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑥𝑥�) as individual 𝑖𝑖’s latent outcome when her 

treatment is 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑥𝑥 and her lagged treatment, the lagged IV, is 𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 𝑥𝑥�. To specify 

the heterogeneous causal effect of the lagged IV, we denote 𝑋𝑋1𝑖𝑖𝑖𝑖  as individual 𝑖𝑖’s 

latent treatment state when 𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1, and 𝑋𝑋0𝑖𝑖𝑖𝑖  as individual 𝑖𝑖’s latent treatment 

state when 𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0. Thus, the observed treatment state is defined latently as 

𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑋𝑋0𝑖𝑖𝑖𝑖 + (𝑋𝑋1𝑖𝑖𝑖𝑖 − 𝑋𝑋0𝑖𝑖𝑖𝑖)𝑋𝑋𝑖𝑖,𝑡𝑡−1 (2.4) 

in which either 𝑋𝑋1𝑖𝑖𝑖𝑖  or 𝑋𝑋0𝑖𝑖𝑖𝑖  can be observed, and (𝑋𝑋1𝑖𝑖𝑖𝑖 − 𝑋𝑋0𝑖𝑖𝑖𝑖)  represents the 

heterogeneous causal effect of 𝑋𝑋𝑖𝑖,𝑡𝑡−1 . With this notation, we now state the 

independence assumption and the exclusion restriction of the lagged IV as follows. 

  1. The independence assumption implies that the instrumental variable should have 

no association with the latent outcome, nor should it have any association with the latent 

treatment state. Specifically, we have 

[{𝑌𝑌𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑥𝑥�);∀𝑥𝑥, 𝑥𝑥�},𝑋𝑋1𝑖𝑖𝑖𝑖,𝑋𝑋0𝑖𝑖𝑖𝑖 ] ⫫ 𝑋𝑋𝑖𝑖,𝑡𝑡−1 (2.5) 

This implies that the lagged IV should have an effect similar to random assignment. In 

other words, the lagged IV should be uncorrelated with the outcome variable or with 

the latent treatment state by the explanatory variable. 

  Scenario 1 violates the independence assumption, because the lagged IV is 

synchronously correlated with the unobserved confounder. Specifically, because 𝑈𝑈𝑖𝑖,𝑡𝑡−1 

influences 𝑈𝑈𝑖𝑖𝑡𝑡 by its marginal effect 𝜙𝜙 and influences 𝑋𝑋𝑖𝑖,𝑡𝑡−1 by its marginal effect 

𝜅𝜅 , 𝑋𝑋𝑖𝑖,𝑡𝑡−1  and 𝑈𝑈𝑖𝑖𝑖𝑖  have a simultaneous relationship. In other words, as 𝑋𝑋𝑖𝑖,𝑡𝑡−1 

changes, 𝑈𝑈𝑖𝑖𝑖𝑖 changes—not causally but synchronously—and further causes a change 

in 𝑌𝑌𝑖𝑖𝑖𝑖  change. In other words, as 𝑋𝑋𝑖𝑖,𝑡𝑡−1  changes by 1 unit, 𝑈𝑈𝑖𝑖𝑖𝑖  changes 

synchronously by 𝜙𝜙
𝜅𝜅

 unit. As a result, 𝑋𝑋𝑖𝑖,𝑡𝑡−1 violates the independence assumption 

because it does not serve as a random exogenous shock. Only by assuming that there 

are no dynamics among unobserved confounders can the independence assumption be 

satisfied. Unfortunately, that assumption is unlikely to hold (Bellemare et al., 2017). 
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This implies that it is almost unavoidable for a lagged IV to be problematic. 

  2. The exclusion restriction implies that 𝑌𝑌𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑥𝑥�) is only a function of 𝑥𝑥. In other 

words, the lagged IV influence the outcome variable only through the explanatory 

variable. This is denoted as 

𝑌𝑌𝑖𝑖𝑖𝑖(𝑥𝑥, 0) = 𝑌𝑌𝑖𝑖𝑖𝑖(𝑥𝑥, 1), 𝑥𝑥 = 0, 1 (2.6) 

  In Scenario 2, because 𝜉𝜉 ≠ 0, 𝑋𝑋𝑖𝑖,𝑡𝑡−1 has a direct causal influence on 𝑌𝑌𝑖𝑖𝑖𝑖  by its 

marginal effect 𝜉𝜉. In Scenario 3, although 𝜉𝜉 = 0, because 𝜓𝜓 ≠ 0, 𝑋𝑋𝑖𝑖,𝑡𝑡−1 has a direct 

causal influence on 𝑌𝑌𝑖𝑖𝑖𝑖 by its marginal effect 𝛿𝛿𝛿𝛿, derived from equations (2.1) and 

(2.3). As a result, both Scenarios 2 and 3 violate not only the independence assumption, 

but also the exclusion restriction. Scenario 4, which is a combination of Scenario 2 and 

3, merely compounds the problem. 

 

II.B. The Treatment Effects in Lagged IV and in OLS 

  The OLS estimate consists of the ATT that we are interested in to identify the 

treatment effect, as well as the selection bias, if no ideal randomized experiment exists. 

The selection bias is the source of endogeneity in OLS estimation. The lagged IV 

estimate consists of the LATE, which measures the treatment effect if the LATE 

Theorem theorem is satisfied. Yet the lagged IV estimate may suffer from endogeneity 

and fail to measure the LATE, when either the independence assumption or the 

exclusion restriction, or both, are violated.  

  To discuss the treatment effects and compare the endogeneity of lagged IV with that 

of naïve OLS, we first discuss the OLS estimate, which measures the observed 

difference between the participants and non-participants of the treatment, such that                    

𝔼𝔼[𝑌𝑌𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 = 0] 

          = 𝔼𝔼[𝑌𝑌1𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌0𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 = 1] + 𝔼𝔼[𝑌𝑌0𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌0𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 = 0] 

= 𝔼𝔼[𝑌𝑌1𝑖𝑖𝑖𝑖 − 𝑌𝑌0𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖] + 𝔼𝔼[𝑌𝑌0𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌0𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 = 0] (2.7) 

where 𝔼𝔼[𝑌𝑌1𝑖𝑖𝑖𝑖 − 𝑌𝑌0𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖]  is the ATT, and 𝔼𝔼[𝑌𝑌0𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌0𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖 = 0]  is the 

selection bias that obstructs us from identifying the ATT. 

  In lagged IV estimation, , when both the exclusion restriction and the independence 

assumption are satisfied, the Wald estimate is 
𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�−𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�
𝔼𝔼�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�−𝔼𝔼�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� =

𝔼𝔼[𝑌𝑌1𝑖𝑖𝑖𝑖 − 𝑌𝑌0𝑖𝑖𝑖𝑖|𝑋𝑋1𝑖𝑖𝑖𝑖 > 𝑋𝑋0𝑖𝑖𝑖𝑖], which is also the LATE that we are interested in.  

  1. The lagged IV estimate in Scenario 1: In Scenario 1, where only the independence 

assumption is violated, we have 
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       𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� 

= 𝔼𝔼 �𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1� + �𝑌𝑌𝑖𝑖𝑖𝑖�1,𝑋𝑋𝑖𝑖,𝑡𝑡−1� − 𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1��𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� (2.8) 

Because the exclusion restriction is satisfied, we have 𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1� = 𝑌𝑌0𝑖𝑖𝑖𝑖, 

𝑌𝑌𝑖𝑖𝑖𝑖�1,𝑋𝑋𝑖𝑖,𝑡𝑡−1� = 𝑌𝑌1𝑖𝑖𝑡𝑡. Therefore, 

              𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� 

            =  𝔼𝔼�𝑌𝑌0𝑖𝑖𝑖𝑖 + (𝑌𝑌1𝑖𝑖𝑖𝑖 − 𝑌𝑌0𝑖𝑖𝑖𝑖)𝑋𝑋1𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�   

=  𝔼𝔼�𝑌𝑌0𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� +  𝔼𝔼�(𝑌𝑌1𝑖𝑖𝑖𝑖 − 𝑌𝑌0𝑖𝑖𝑖𝑖)𝑋𝑋1𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� (2.9) 

Similarly, we have 

               𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� 

            = 𝔼𝔼 �𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1� + �𝑌𝑌𝑖𝑖𝑖𝑖�1,𝑋𝑋𝑖𝑖,𝑡𝑡−1� − 𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1��𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�             

            =  𝔼𝔼�𝑌𝑌0𝑖𝑖𝑖𝑖 + (𝑌𝑌1𝑖𝑖𝑖𝑖 − 𝑌𝑌0𝑖𝑖𝑖𝑖)𝑋𝑋0𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�             

= 𝔼𝔼�𝑌𝑌0𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� +  𝔼𝔼�(𝑌𝑌1𝑖𝑖𝑖𝑖 − 𝑌𝑌0𝑖𝑖𝑖𝑖)𝑋𝑋0𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� (2.10) 

  If the exclusion restriction is satisfied, we have  

𝔼𝔼�𝑌𝑌0𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� = 𝔼𝔼�𝑌𝑌0𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� (2.11) 

Therefore, the Wald estimate is 

         
𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�−𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�
𝔼𝔼�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�−𝔼𝔼�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�   

=
 𝔼𝔼�(𝑌𝑌1𝑖𝑖𝑖𝑖 − 𝑌𝑌0𝑖𝑖𝑖𝑖)𝑋𝑋1𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�−𝔼𝔼�(𝑌𝑌1𝑖𝑖𝑖𝑖 − 𝑌𝑌0𝑖𝑖𝑖𝑖)𝑋𝑋0𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�

𝔼𝔼�𝑋𝑋1𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�−𝔼𝔼�𝑋𝑋0𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� (2.12) 

which is named as the “restricted local ATT”, and is different from the LATE that we 

are interested in.  

  Compared with the naïve OLS estimate, it is easy to see that the lagged IV estimate 

in Scenario 1 does not have a selection bias, implying that the extent of the endogeneity 

problem in the Scenario 1 is smaller than the extent of the endogeneity problem in a 

naïve OLS. Furthermore, it is also easy to see that the lagged IV estimate in the Scenario 

1 is still different from the LATE. This is because of (i) the lagged IV’s dependency on 

the latent treatment, scaled by 𝜌𝜌, the marginal causal effect of the lagged IV on the 

treatment variable, and (ii) the lagged IV’s dependency on the latent outcome, scaled 

by 𝜙𝜙
𝜅𝜅

, the synchronous relationship between the lagged IV and the unobserved 

confounder. Because the unobserved confounder’s marginal causal effect on the 

outcome variable is 𝛿𝛿, we could initially predict that the key parameters for the extent 

of endogeneity of the Scenario 1 of lagged IV estimation are 𝜌𝜌, 𝜙𝜙, 𝜅𝜅 and 𝛿𝛿. 
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  2. The lagged IV estimates in Scenario 2, 3 and 4: In Scenario 2, 3 and 4, both the 

exclusion restriction and the independence assumption are violated, to derive 
𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�−𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�
𝔼𝔼�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�−𝔼𝔼�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�, the LATE, we have  

              𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� 

            = 𝔼𝔼 �𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1� + �𝑌𝑌𝑖𝑖𝑖𝑖�1,𝑋𝑋𝑖𝑖,𝑡𝑡−1� − 𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1��𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� 

            = 𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1��𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� 

+𝔼𝔼 ��𝑌𝑌𝑖𝑖𝑖𝑖�1,𝑋𝑋𝑖𝑖,𝑡𝑡−1� − 𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1�� 𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� (2.13) 

and similarly, 

               𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� 

             = 𝔼𝔼 �𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1� + �𝑌𝑌𝑖𝑖𝑖𝑖�1,𝑋𝑋𝑖𝑖,𝑡𝑡−1� − 𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1��𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� 

             = 𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1��𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� 

+𝔼𝔼 ��𝑌𝑌𝑖𝑖𝑖𝑖�1,𝑋𝑋𝑖𝑖,𝑡𝑡−1� − 𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1�� 𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� (2.14) 

  Therefore, the estimate becomes the sum of the “relaxed local ATT”, 

𝔼𝔼��𝑌𝑌𝑖𝑖𝑖𝑖(1) − 𝑌𝑌𝑖𝑖𝑖𝑖(0)�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� − 𝔼𝔼��𝑌𝑌𝑖𝑖𝑖𝑖(1) − 𝑌𝑌𝑖𝑖𝑖𝑖(0)�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�
𝔼𝔼�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1� − 𝔼𝔼�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�

 

and the “local selection bias”, 
𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖(0)�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�−𝔼𝔼�𝑌𝑌𝑖𝑖𝑖𝑖(0)�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0�

𝔼𝔼�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 1�−𝔼𝔼�𝑋𝑋𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑡𝑡−1 = 0� , where 

𝑌𝑌𝑖𝑖𝑖𝑖(1) ≡ 𝑌𝑌𝑖𝑖𝑖𝑖�1,𝑋𝑋𝑖𝑖,𝑡𝑡−1�, 𝑌𝑌𝑖𝑖𝑖𝑖(0) ≡ 𝑌𝑌𝑖𝑖𝑖𝑖�0,𝑋𝑋𝑖𝑖,𝑡𝑡−1�. As a result, the estimates in Scenario 2, 

3 and 4 consist of the “local selection bias” and the “relaxed local ATT”, which are 

quite different from the LATEs that we are interested in. 

  Compared with the OLS estimate, it is easy to see that the lagged IV estimates in the 

Scenario 2, 3 and 4 include a “local selection bias”, which could be greater than the 

selection bias in the naïve OLS estimate. Moreover, it is also easy to see that the lagged 

IV estimates in the Scenario 2, 3 and 4 also include the “relaxed local ATTs”, which are 

different from the “restricted local ATT” in Scenario 1. These imply that the extent of 

endogeneity in Scenario 2, 3 and 4 are greater than that in Scenario 1, and could be 

greater than that in the naïve OLS. 

  To sum up, the naïve OLS estimate suffers from endogeneity because its estimate 

includes a selection bias. When the lagged IV estimate only violates the independence 

assumption, it suffers from the endogeneity, because the “restricted local ATT” in its 

estimate is different from the ATT in the naïve OLS estimate. When the lagged IV 



 11 

estimate violates both the exclusion restriction and the independence assumption, it 

suffers from endogeneity because, on the one hand, the estimate includes “local 

selection bias” and, on the other hand, the “relaxed local ATT”, which is different from 

the ATT in the naïve OLS estimate.  

 

III. BIASEDNESS AND INCONSISTENCY  

  The discussion of treatment effects in the last section demonstrates why using a 

lagged explanatory variable as an IV is unlikely to mitigate endogeneity issues. In this 

section, we characterize the treatment effect of lagged IV estimation analytically, and 

compare it with the analytical treatment effect of naïve OLS estimation. These 

analytical results are in line with what we find in last section.  

For simplicity, we set up a bivariate regression scenario, and discuss the 𝐴𝐴𝐴𝐴(1) 

process in the data generation process for both the endogenous explanatory variable 

and the unobserved confounder. 

 

III.A. Comparing Lagged IV and OLS Estimates 

  Scenario 1. We first quantitatively discuss Scenario 1, which violates the 

independence assumption but not the exclusion restriction. Following Bellemare et. al 

(2017), we consider the following setup: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖, (3.1) 

𝑋𝑋𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝜅𝜅𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖 , and (3.2) 

𝑈𝑈𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑈𝑈𝑖𝑖,𝑡𝑡−1 + 𝜈𝜈𝑖𝑖𝑖𝑖, (3.3) 

where 𝑖𝑖  and 𝑡𝑡  respectively denote units of observation and time, and where 𝑖𝑖 =

1, 2, …  𝑁𝑁, 𝑡𝑡 = 1, 2, … ,𝑇𝑇.  

For simplicity, we drop 𝑖𝑖 for the remainder of this section. As before, 𝑌𝑌𝑡𝑡  is the 

outcome variable, and 𝑋𝑋𝑡𝑡  represents the explanatory variable. The 𝐴𝐴𝐴𝐴(1) process 

implies that 𝑋𝑋𝑡𝑡  is determined both by its lagged value and by the unobserved 

confounder, and that 𝑈𝑈𝑡𝑡 is determined by its one-order lagged value. For coefficients 

we assume that  𝜌𝜌,𝜙𝜙 ∈ (0,1) ; for the error terms we assume that 𝜂𝜂𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝜂𝜂2) , 

 𝜖𝜖𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝜖𝜖2), and 𝑣𝑣𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝑣𝑣2). 

  Since 𝑈𝑈𝑡𝑡, the unobserved confounder, is unobserved, a naïve OLS estimation of (3.1) 

obviously suffers from endogeneity, and the coefficient 𝛽𝛽  is not identified. More 

formally, 𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡) , and so 
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𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝛽𝛽𝑋𝑋𝑡𝑡 + 𝛿𝛿𝑈𝑈𝑡𝑡 + 𝜖𝜖𝑡𝑡)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)
 

= 𝛽𝛽 +
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

(3.4) 

Equation (3.4) implies that in Scenario 1, the OLS estimate is biased, and the bias 
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)  is in line with the selection bias.  

  To discuss the consistency of the OLS estimate, we need to use equation (A.5) in the 

Appendix, which allows deriving the following expression: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡) =
𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑈𝑈𝑡𝑡)

1 − 𝜙𝜙𝜙𝜙
(3.5) 

  Thus, plugging equation (3.5) into (3.4) yields 

𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 𝛽𝛽 + 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑈𝑈𝑡𝑡)
(1−𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

           = 𝛽𝛽 + 𝛿𝛿𝛿𝛿∑ 𝑈𝑈𝑡𝑡2𝑇𝑇
𝑡𝑡=1

(1−𝜙𝜙𝜙𝜙)∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1

(3.6)
   

  Using the Slutsky theorem, (3.6) becomes 

𝑝𝑝lim𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 𝛽𝛽 +
𝛿𝛿𝛿𝛿[𝑝𝑝lim�1𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 ]

(1−𝜙𝜙𝜙𝜙)[𝑝𝑝lim�1𝑇𝑇�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ]

 (3.7)     

where 
𝛿𝛿𝛿𝛿[𝑝𝑝lim�1𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 ]

(1−𝜙𝜙𝜙𝜙)[𝑝𝑝lim�1𝑇𝑇�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ]

 is the estimation inconsistency. Because 𝜙𝜙 ∈ (0,1), (3.2) 

and (3.3) imply that as 𝑇𝑇 → ∞, 𝑝𝑝lim �1
𝑇𝑇
�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 ≪ 𝑝𝑝lim �1
𝑇𝑇
�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇

𝑡𝑡=1 . As a result, 

𝑝𝑝 lim
𝑇𝑇→∞

𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 → 𝛽𝛽; in other words, the OLS estimate in Scenario 1 is consistent.  

Now consider an IV estimation using 𝑋𝑋𝑡𝑡−1 as the instrumental variable for 𝑋𝑋𝑡𝑡, 

the IV estimates expression implies that 

 𝛽̂𝛽𝐼𝐼𝐼𝐼,1 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑌𝑌𝑡𝑡)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡)

(3.8) 

  Plugging equation (3.1) into (3.8), we have 

 𝛽̂𝛽𝐼𝐼𝐼𝐼,1 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝛽𝛽𝑋𝑋𝑡𝑡 + 𝛿𝛿𝑈𝑈𝑡𝑡 + 𝜖𝜖𝑡𝑡)

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡)
(3.9) 

and so 

 𝛽̂𝛽𝐼𝐼𝐼𝐼,1 = 𝛽𝛽 +
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡)

 

= 𝛽𝛽 + 𝛿𝛿

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

𝜌𝜌 + 𝜅𝜅 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

(3.10) 
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   Therefore, (3.10) implies that in Scenario 1, the lagged IV estimate is biased, and 

that the bias is 𝛿𝛿
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

𝜌𝜌+𝜅𝜅𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

, which is in line with the “restricted local ATT”. 𝜅𝜅 is 

the key parameter to determine to what extent the lagged IV estimate is biased. This is 

because the extent, to which the lagged IV violates the independence assumption is 

measured by 𝜅𝜅. 

   To discuss the consistency of the lagged IV estimate in Scenario 1, we use equation 

(A.5) in the Online Appendix to derive 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1) =

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝜙𝜙𝑈𝑈𝑡𝑡−1 + 𝜈𝜈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)  

=
𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡−1)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)  

=
𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑈𝑈𝑡𝑡)

(1 − 𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)
(3.11) 

  Therefore, we have 

 𝛽̂𝛽𝐼𝐼𝐼𝐼,1 = 𝛽𝛽 +
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑈𝑈𝑡𝑡)

𝜌𝜌(1 − 𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡) + 𝜙𝜙𝜅𝜅2𝑉𝑉𝑉𝑉𝑉𝑉(𝑈𝑈𝑡𝑡)
 

= 𝛽𝛽 +
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑈𝑈𝑡𝑡)

𝜌𝜌
𝜙𝜙 (1 − 𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡) + 𝜅𝜅2𝑉𝑉𝑉𝑉𝑉𝑉(𝑈𝑈𝑡𝑡)

(3.12) 

  Using the Slutsky theorem, (3.12) becomes 

𝑝𝑝lim 𝛽̂𝛽𝐼𝐼𝐼𝐼,1 = 𝛽𝛽 +
𝛿𝛿𝛿𝛿[𝑝𝑝lim �1

𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ]

𝜌𝜌
𝜙𝜙 (1 − 𝜙𝜙𝜙𝜙) �𝑝𝑝lim �1

𝑇𝑇�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1 � + 𝜅𝜅2[𝑝𝑝lim �1

𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ]

 (3.13) 

Because 𝜙𝜙 ∈ (0,1) , (3.2) and (3.3) imply that as 𝑇𝑇 → ∞ , 𝑝𝑝lim �1
𝑇𝑇
�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 ≪

𝑝𝑝lim �1
𝑇𝑇
�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇

𝑡𝑡=1 . As a result, 𝑝𝑝 lim
𝑇𝑇→∞

𝛽̂𝛽𝐼𝐼𝐼𝐼,1 → 𝛽𝛽; in other words, the lagged IV estimate 

in Scenario 1 is consistent. 

  Scenario 2. This scenario not only violates the independence assumption but also the 

exclusion restriction. We consider the following model 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝛿𝛿𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 (3.14) 

𝑋𝑋𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝜅𝜅𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖 (3.15) 

𝑈𝑈𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑈𝑈𝑖𝑖,𝑡𝑡−1 + 𝜈𝜈𝑖𝑖𝑖𝑖 (3.16) 

For simplicity, we drop 𝑖𝑖 for the remainder of this section. Consider the OLS estimate 

in Scenario 2, which is such that 
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 𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

 

=
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝛽𝛽𝑋𝑋𝑡𝑡 + 𝜉𝜉𝑋𝑋𝑡𝑡−1 + 𝛿𝛿𝑈𝑈𝑡𝑡 + 𝜖𝜖𝑡𝑡)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)
 

= 𝛽𝛽 +
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

+
𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉(𝑋𝑋𝑡𝑡,𝑋𝑋𝑡𝑡−1)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)
(3.17) 

  Therefore, (3.17) implies that in Scenario 2, the OLS estimate is biased, in which 
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡) + 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉(𝑋𝑋𝑡𝑡,𝑋𝑋𝑡𝑡−1)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡) , the bias, is in line with the selection bias. 

  To discuss the consistency of the OLS estimate, we need to using equation (A.5) in 

the Online Appendix, and then we could derive the following expression that   

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡) = 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑈𝑈𝑡𝑡)
1−𝜙𝜙𝜙𝜙

(3.18) 

and that 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑋𝑋𝑡𝑡−1)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

= 𝜌𝜌 +
𝜙𝜙𝜅𝜅2𝑉𝑉𝑉𝑉𝑉𝑉(𝑈𝑈𝑡𝑡)

(1 − 𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)
(3.19) 

  Therefore, we have an expression that 

𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 𝛽𝛽 + 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑈𝑈𝑡𝑡)
(1−𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡) + 𝜉𝜉𝜉𝜉 + 𝜙𝜙𝜙𝜙𝜅𝜅2𝑉𝑉𝑉𝑉𝑉𝑉(𝑈𝑈𝑡𝑡)

(1−𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

           = 𝛽𝛽 + 𝛿𝛿𝛿𝛿∑ 𝑈𝑈𝑡𝑡2𝑇𝑇
𝑡𝑡=1

(1−𝜙𝜙𝜙𝜙)∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1

+ 𝜙𝜙𝜙𝜙𝜅𝜅2 ∑ 𝑈𝑈𝑡𝑡2𝑇𝑇
𝑡𝑡=1

(1−𝜙𝜙𝜙𝜙)∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1

(3.20)
   

  Using the Slutsky theorem, (3.20) becomes 

𝑝𝑝lim𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 𝛽𝛽 + 𝜉𝜉𝜉𝜉 +
(𝛿𝛿𝛿𝛿+𝜙𝜙𝜙𝜙𝜅𝜅2)[𝑝𝑝lim�1𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 ]

(1−𝜙𝜙𝜙𝜙)[𝑝𝑝lim�1𝑇𝑇�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ]

 (3.21)     

Because 𝜙𝜙 ∈ (0,1) , (3.15) and (3.16) imply that as 𝑇𝑇 → ∞ , 𝑝𝑝lim �1
𝑇𝑇
�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 ≪

𝑝𝑝lim �1
𝑇𝑇
�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇

𝑡𝑡=1 . As a result, 𝑝𝑝 lim
𝑇𝑇→∞

𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 → 𝛽𝛽 + 𝜉𝜉𝜉𝜉; in other words, the OLS estimate 

in Scenario 2 is inconsistent. 

  Consider an IV estimation using 𝑋𝑋𝑡𝑡−1 as the instrumental variable for 𝑋𝑋𝑡𝑡, the IV 

estimates expression implies that 

 𝛽̂𝛽𝐼𝐼𝐼𝐼,2 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑌𝑌𝑡𝑡)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡)

(3.22) 

  Plugging equation (3.14) into (3.22), we have 

 𝛽̂𝛽𝐼𝐼𝐼𝐼,2 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝛽𝛽𝑋𝑋𝑡𝑡 + 𝜉𝜉𝑋𝑋𝑡𝑡−1 + 𝛿𝛿𝑈𝑈𝑡𝑡 + 𝜖𝜖𝑡𝑡)

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡)
(3.23) 

and then 
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 𝛽̂𝛽𝐼𝐼𝐼𝐼,2 = 𝛽𝛽 +
𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉(𝑋𝑋𝑡𝑡−1)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡)

+
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡)

 

= 𝛽𝛽 + 𝜉𝜉
1

𝜌𝜌 + 𝜅𝜅 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

+ 𝛿𝛿

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

𝜌𝜌 + 𝜅𝜅 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

(3.24) 

   Therefore, (3.24) implies that in Scenario 2, the lagged IV estimate is biased, in 

which 𝜉𝜉 1

𝜌𝜌+𝜅𝜅𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

 is in line with the “local selection bias”, and 𝛽𝛽 +

𝛿𝛿
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

𝜌𝜌+𝜅𝜅𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

 is in line with the “relaxed local ATT” in Scenario 2. 𝜅𝜅 and 𝜉𝜉 are 

the key parameter determining to what extent the lagged IV estimate is biased. This is 

because the extent, to which the exclusion restriction of the lagged IV violates, is 

measured by 𝜉𝜉. 

  Then we discuss the consistency of the lagged IV estimate in Scenario 2. We have 

already known, from the Online Appendix, that    

𝑝𝑝 lim
𝑡𝑡→∞

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1) =

𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑈𝑈𝑡𝑡)
(1 − 𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

(3.25) 

  Therefore, we have 

               𝛽̂𝛽𝐼𝐼𝐼𝐼,2 = 𝛽𝛽 + 𝜉𝜉(1−𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)+𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑈𝑈𝑡𝑡)
𝜌𝜌(1−𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)+𝜙𝜙𝜅𝜅2𝑉𝑉𝑉𝑉𝑉𝑉(𝑈𝑈𝑡𝑡) 

= 𝛽𝛽 +
𝜉𝜉 �1
𝜙𝜙 − 𝜌𝜌� 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡) + 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑈𝑈𝑡𝑡)

𝜌𝜌
𝜙𝜙 (1 − 𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡) + 𝜅𝜅2𝑉𝑉𝑉𝑉𝑉𝑉(𝑈𝑈𝑡𝑡)

(3.26) 

  Using the Slutsky theorem, we have 

𝑝𝑝lim𝛽̂𝛽𝐼𝐼𝐼𝐼,2 = 𝛽𝛽 +
𝜉𝜉�1𝜙𝜙−𝜌𝜌��𝑝𝑝lim�

1
𝑇𝑇�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇

𝑡𝑡=1 �+𝛿𝛿𝛿𝛿[𝑝𝑝lim�1𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ]

𝜌𝜌�1𝜙𝜙−𝜌𝜌��𝑝𝑝lim�
1
𝑇𝑇�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇

𝑡𝑡=1 �+𝜅𝜅
2
𝜙𝜙 [𝑝𝑝lim�1𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 ]
(3.27)

Because 𝜙𝜙 ∈ (0,1), (3.15) and (3.16) imply that as 𝑇𝑇 → ∞, 𝑝𝑝 lim
𝑇𝑇→∞

�1
𝑇𝑇
�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 ≪

𝑝𝑝 lim
𝑇𝑇→∞

�1
𝑇𝑇
�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇

𝑡𝑡=1 . As a result, 𝑝𝑝 lim
𝑇𝑇→∞

𝛽̂𝛽𝐼𝐼𝐼𝐼,2 → 𝛽𝛽 + 𝜉𝜉
𝜌𝜌
; in other words, the lagged IV 

estimate in Scenario 2 is inconsistent. We could also derive that in Scenario 2, 

𝑝𝑝 lim
𝑇𝑇→∞

𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 → 𝛽𝛽 + 𝜉𝜉𝜉𝜉; in other words, the OLS estimate in Scenario 2 is inconsistent. 

As 𝜉𝜉
𝜌𝜌

> 𝜉𝜉𝜉𝜉, we know that the lagged IV estimate has significantly larger extent of 

inconsistency that the OLS estimate. 

  Scenario 3. This scenario violates both the independence assumption and the 
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exclusion restriction. We consider the following model 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 (3.28) 

𝑋𝑋𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝜅𝜅𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖 (3.29) 

𝑈𝑈𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑈𝑈𝑖𝑖,𝑡𝑡−1 + 𝜓𝜓𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝜈𝜈𝑖𝑖𝑖𝑖 (3.30) 

For simplicity, we drop 𝑖𝑖 for the reminder of this session, and everything is similar to 

those in Section III.A.  

  Consider the OLS estimate in Scenario 3, such that 

 𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

 

=
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝛽𝛽𝑋𝑋𝑡𝑡 + 𝛿𝛿𝑈𝑈𝑡𝑡 + 𝜖𝜖𝑡𝑡)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)
 

= 𝛽𝛽 +
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

(3.31) 

  Therefore, (3.31) implies that in Scenario 3, the OLS estimate is biased, in which 
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡) , the bias, is in line with the selection bias. 

  To discuss the consistency of the OLS estimate, we need to using equation (A.12) in 

the Online Appendix. Therefore, we know that using the Slutsky theorem, we have 

𝑝𝑝lim𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 𝛽𝛽 + 𝜓𝜓𝜓𝜓
(1−𝜙𝜙𝜙𝜙) +

𝜅𝜅[𝑝𝑝lim�1𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ]

(1−𝜙𝜙𝜙𝜙)[𝑝𝑝lim�1𝑇𝑇�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ]

 (3.32)     

Because 𝜓𝜓𝜓𝜓
(1−𝜙𝜙𝜙𝜙) ≠ 0, in Scenario 3, the OLS estimate is inconsistent. 

  Consider an IV estimation using 𝑋𝑋𝑡𝑡−1  as the instrumental variable for 𝑋𝑋𝑡𝑡 , the 

lagged IV estimates expression implies that 

 𝛽̂𝛽𝐼𝐼𝐼𝐼,3 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑌𝑌𝑡𝑡)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡)

(3.33) 

  Plugging equation (3.27) into (3.32), we have 

 𝛽̂𝛽𝐼𝐼𝐼𝐼,3 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝛽𝛽𝑋𝑋𝑡𝑡 + 𝛿𝛿𝑈𝑈𝑡𝑡 + 𝜖𝜖𝑡𝑡)

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡)
(3.34) 

and then 

 𝛽̂𝛽𝐼𝐼𝐼𝐼,3 = 𝛽𝛽 +
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡)

 

= 𝛽𝛽 + 𝛿𝛿

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

𝜌𝜌 + 𝜅𝜅 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

(3.35) 

   Therefore, (3.35) implies that in Scenario 3, the lagged IV estimate is biased, in 
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which 𝛽𝛽 + 𝛿𝛿
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

𝜌𝜌+𝜅𝜅𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1)

 is in line with the “local selection bias” and the “relaxed 

local ATT”, in Scenario 3. 𝜅𝜅 and 𝜓𝜓 are the key parameter determining to what extent 

the lagged IV estimate is biased. This is because the extent, to which the exclusion 

restriction of the lagged IV violates, is measured by 𝜓𝜓. 

  Then we discuss the consistency of the lagged IV estimate in Scenario 3. We know 

from the appendix that    

𝑝𝑝 lim
𝑡𝑡→∞

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1) =

𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑈𝑈𝑡𝑡)
(1 − 𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

+
𝜓𝜓

1 − 𝜙𝜙𝜙𝜙
 

  Therefore, we have 

𝑝𝑝lim𝛽̂𝛽𝐼𝐼𝐼𝐼,3  = 𝛽𝛽 +
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝑈𝑈𝑡𝑡) + 𝛿𝛿𝛿𝛿

𝜙𝜙 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡)

[𝜌𝜌𝜙𝜙 (1 − 𝜙𝜙𝜙𝜙) + 𝜓𝜓𝜓𝜓]𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡) + 𝜅𝜅2𝑉𝑉𝑉𝑉𝑉𝑉(𝑈𝑈𝑡𝑡)
(3.36) 

Using the Slutsky theorem, we have 

𝑝𝑝lim𝛽̂𝛽𝐼𝐼𝐼𝐼,3 = 𝛽𝛽 +
𝛿𝛿𝛿𝛿[𝑝𝑝lim�1𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 ]+𝛿𝛿𝛿𝛿𝜙𝜙 �𝑝𝑝lim�1𝑇𝑇�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1 �

[𝜌𝜌𝜙𝜙(1−𝜙𝜙𝜙𝜙)+𝜓𝜓𝜓𝜓]�𝑝𝑝lim�1𝑇𝑇�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1 �+𝜅𝜅2[𝑝𝑝lim�1𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 ]
(3.37)

It is easy to see that the “relaxed local ATT” in Scenario 3 is smaller than the “restrict 

local ATT” in Scenario 1; however, due to the “local selection bias” in Scenario 3, 𝛽̂𝛽𝐼𝐼𝐼𝐼,3 

in Scenario 3 has greater extent of inconsistency than 𝛽̂𝛽𝐼𝐼𝐼𝐼,1 in Scenario 1.  

  When comparing with OLS, we know that in Scenario 3, 𝑝𝑝lim𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 𝛽𝛽 + 𝜓𝜓𝜓𝜓
(1−𝜙𝜙𝜙𝜙) +

𝜅𝜅[𝑝𝑝lim�1𝑇𝑇�∑ 𝑈𝑈𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ]

(1−𝜙𝜙𝜙𝜙)[𝑝𝑝lim�1𝑇𝑇�∑ 𝑋𝑋𝑡𝑡2𝑇𝑇
𝑡𝑡=1 ]

. Therefore, in Scenario 3, it is ambiguous whether the lagged IV 

estimate has larger extent of inconsistency than the OLS estimate. 

   Scenario 4. This scenario combines Scenarios 2 and 3, and so we know that the 

lagged IV estimate in this scenario could be more inconsistent than the OLS estimate. 

 

III.B. Implications 

  The implications of the foregoing for empirical research are thus 

(1) If both 𝜉𝜉 = 0 and 𝜓𝜓 = 0, the lagged IV satisfies the exclusion restriction, but 

violates the independence assumption. In this scenario, the lagged IV is safe, because 

its estimate is consistent. 

(2) If 𝜉𝜉 ≠ 0 but 𝜓𝜓 = 0, the lagged IV violates both the exclusion restriction and the 

independence assumption. In this scenario, the lagged IV is unambiguously bad, 
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because its estimate is inconsistent—more so than the OLS estimate. 

(3) If 𝜉𝜉 = 0 but 𝜓𝜓 ≠ 0, the lagged IV violates both the exclusion restriction and the 

independence assumption. In this scenario, the lagged IV is also unambiguously bad, 

because its estimate is inconsistent. In addition, it is unclear whether the lagged IV 

estimate is more inconsistent than the OLS estimate. 

(4) If 𝜉𝜉 ≠ 0 and 𝜓𝜓 ≠ 0, the lagged IV violates both the exclusion restriction and the 

independence assumption. In this scenario, the lagged IV is once again unambiguously 

bad, because its estimate is inconsistent—again more so than the OLS estimate. 

 

IV. SIMULATION ANALYSIS 
  In this section, we use Monte Carlo methods to create a simulation of the theoretical 

setups of our four scenarios discussed before, to quantitatively discuss the biases of 

both the lagged IV estimates and the OLS estimates, together with the root mean 

squared errors (RMSE) and the likelihoods of Type I errors of the lagged IV and the 

OLS estimation. 

 

IV.A. Setup 

  We start with Scenario 1, which only violates the independence assumption but not 

the exclusion restriction. Figure 1 parameterizes the relations between the outcome 

variable, the explanatory variable and the unobserved confounders in Scenario 1. As is 

shown, the unobserved confounder, regarded as a general representation of endogeneity 

source, is correlated both with 𝑌𝑌𝑡𝑡 and with 𝑋𝑋𝑡𝑡. The parameter 𝛿𝛿, the direct marginal 

effect of 𝑈𝑈𝑡𝑡 on 𝑌𝑌𝑡𝑡, is normalized as 1. The parameter 𝛽𝛽, the direct marginal effect of 

𝑋𝑋𝑡𝑡 on 𝑌𝑌𝑡𝑡, is assigned a value of either 0 or 2. 

  The first key parameter in our simulation is 𝜅𝜅, the marginal effect of 𝑈𝑈𝑡𝑡 on 𝑋𝑋𝑡𝑡 in 

our setup, which measures the magnitude of the endogeneity at the violation of the 

independence assumption. The value of 𝜅𝜅 is assigned a value of 0.5 or 2 to represent 

the attenuated and the amplified marginal effect of 𝑈𝑈 on 𝑋𝑋, respectively. The second 

and the third key parameters are the autocorrelation parameters 𝜌𝜌 and 𝜙𝜙. They are set 

at 0.5 and {0, 0.1, 0.2, …, 0.9}, respectively, to represent the relevance of 𝑋𝑋𝑡𝑡, the 

endogenous variable, and 𝑋𝑋𝑡𝑡−1, the lagged IV, relative to the relevance of the current 

and the lagged unobserved confounder. In each simulation, we generate a panel with 
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𝑇𝑇 = 50 periods and 𝑁𝑁 = 100 cross-section units, for a total of 5,000 observations. 

Our simulation follows the same data generating process (DGPs) as in section III. 

Each set of parameter values, shown in Table 2, are simulated 100 times. Then three 

estimators of 𝛽𝛽  are illustrated: (1) the “naïve” estimator ( 𝛽̂𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ), or the OLS 

estimator, that regress 𝑌𝑌𝑡𝑡  on 𝑋𝑋𝑡𝑡  and ignores the unobserved confounder, (2) the 

“lagged IV” estimator (𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) that regress 𝑌𝑌𝑡𝑡 on 𝑋𝑋𝑡𝑡 and use 𝑋𝑋𝑡𝑡−1 as the IV for 𝑋𝑋𝑡𝑡, 

and (3) the “correct” estimator ( 𝛽̂𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ) that regress 𝑌𝑌𝑡𝑡  on 𝑋𝑋𝑡𝑡  and also the 

unobserved confounder. Here the “correct” estimator is the counterfactual, and since 

researchers cannot observe the confounders in their applied studies, our DGPs provides 

the tests of the performance of both the OLS estimates and the lagged IV estimates, by 

comparing each of their bias with the “correct” estimator, of which the bias is zero. To 

make our analysis simple and straightforward, we just use the one-period 

autocorrelation. 

  Three criteria are used to evaluate the performance of the lagged IV estimates: (1) 

bias, (2) root mean squared error (RMSE), and (3) likelihood of Type I error, which 

tells researchers the extent to which they could make false inference on the estimates, 

rejecting the true null hypotheses that 𝛽𝛽 = 0. 

  We then discuss Scenario 2, which violates not only the independence assumption, 

but also the exclusion restriction directly. Figure 4 parameterizes the relations between 

the outcome variable, the explanatory variable and the unobserved confounders in 

Scenario 2. In this scenario, the first key parameter in our simulation is 𝜉𝜉, the marginal 

effect of 𝑋𝑋𝑡𝑡−1 on 𝑌𝑌𝑡𝑡 in our setup, which measures the magnitude of the endogeneity 

at the violation of the exclusion restriction. The value of 𝜉𝜉 is set at 0.5 or 2, to represent 

the attenuated and the amplified marginal effect of 𝑋𝑋𝑡𝑡−1 on 𝑌𝑌𝑡𝑡, respectively. 

  After those, we discuss Scenario 3, which violates not only the independence 

assumption, but also the exclusion restriction indirectly. Figure 7 parameterizes the 

relations between the outcome variable, the explanatory variable and the unobserved 

confounders in Scenario 3. In this scenario, the first key parameter in our simulation is 

𝜓𝜓, the marginal effect of 𝑋𝑋𝑡𝑡−1 on 𝑈𝑈𝑡𝑡 in our setup, which measures the magnitude of 

the endogeneity at the violation of the exclusion restriction. The value of 𝜓𝜓 is set at 

0.5 or 2, to represent the attenuated and the amplified marginal effect of 𝑋𝑋𝑡𝑡−1 on 𝑈𝑈𝑡𝑡, 

respectively. 
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IV.B. Monte Carlo Simulation Results 

  Figure 2 summarizes the simulation results when 𝜅𝜅=0.5 and 2, 𝜌𝜌 = 0.5, and 𝜙𝜙 

ranges from 0 to 0.9. The simulation results show that  

(1) both 𝛽̂𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  and 𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  are biased, and the bias of the lagged IV estimate is 

smaller than that of the OLS estimate. This is consistent with our theoretical prediction 

that as the lagged IV only violates the independence assumption in Scenario 1, it is less 

problematic than the OLS estimate, and  

(2) As 𝜙𝜙 increases, the bias of the lagged IV estimate also increases; as 𝜅𝜅 increases, 

the bias of the lagged IV estimate decreases. This is also consistent with our theoretical 

prediction that the lagged IV estimate’s violation of the independence assumption is 

quantified with 𝜙𝜙
𝜅𝜅

, the synchronous change of 𝑈𝑈𝑡𝑡  by 𝑋𝑋𝑡𝑡 ; as 𝜙𝜙
𝜅𝜅

 increases, the 

independence assumption is violated to a larger extent and as a result, the lagged IV 

estimate suffers from higher bias. (3) The RMSEs show similar patterns as the biases.  

  Our simulations also show what happens when the null hypothesis (i.e., 𝛽𝛽 = 0) is 

true and an applied researcher uses the lagged IV method to test the alternative 

hypothesis that 𝛽𝛽 ≠ 0. Here we use the 95% confidence levels. 

  Our simulation results imply that when 𝜅𝜅 > 0 and as 𝜙𝜙 ranges from 0 to 1, the 

likelihood of a Type I error rises dramatically. The reason is that lagged IV 

identification will lead to nonzero estimates of 𝛽𝛽 even with 𝛽𝛽 = 0, because 𝛿𝛿, the 

marginal effect of unobserved confounder on the outcome variable, and 𝜅𝜅, the marginal 

effect of unobserved confounder on the explanatory variable, are both nonzero. In 

addition, similar to the magnitude of estimation bias, the likelihood of rejecting the true 

null hypothesis rises dramatically and becomes close to 1, as 𝜙𝜙 goes up.  

  Further, Figure 3 presents simulation results when 𝜙𝜙 = 0.5, 𝜌𝜌 ranges from 0 to 1, 

and 𝜅𝜅=0.5 and 2. These results show that  

(1) Both 𝛽̂𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 are biased, and the bias of the lagged IV estimate is 

smaller than that of the OLS estimate. This is consistent with our theoretical prediction 

that as the lagged IV only violates the independence assumption in Scenario 1, it is less 

problematic than the OLS estimate.  

(2) As 𝜌𝜌 increases, the bias of the lagged IV estimate decreases. This shows that 

as the relevance of the lagged IV and the endogenous variable goes up, the validity of 

the lagged IV also goes up.  

(3) As 𝜅𝜅  increases, the bias of the lagged IV estimate decreases. This is also 
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consistent with our theoretical prediction that the lagged IV estimate’s violation of the 

independence assumption is quantified with 𝜙𝜙
𝜅𝜅
, the synchronous change of 𝑈𝑈𝑡𝑡 by 𝑋𝑋𝑡𝑡; 

as 𝜙𝜙
𝜅𝜅
 increases, the independence assumption is violated to a larger extent and as a 

result, the lagged IV estimate suffers from higher bias.  

(4) The RMSEs show similar patterns as the biases. (5) The likelihood of the Type 

I error is very high. 

  In sum, our simulation results convey an unambiguous message: If the lagged 

explanatory variable has neither a direct causal effect on the outcome variable or on the 

unobserved confounder, using lagged explanatory variable as the IV in instrumental 

estimation can mitigate both bias and RMSE. The likelihood of a Type I error, however, 

can hardly be mitigated by the lagged IV method. These results imply that even if the 

exclusion restriction is satisfied, the lagged IV method is still problematic.  

  We also discuss the case in which the lagged explanatory variable has a direct causal 

effect on the outcome variable, the case in which the lagged explanatory variable has a 

direct causal effect on the unobserved confounder, and the case in which the lagged 

explanatory variable has direct causal effects both on the outcome variable and on the 

unobserved confounder. These cases coincide with Scenario 2, 3 and 4 discussed in our 

conceptual framework. These three cases yield much different results regarding 

estimation bias and RMSE, that both bias and RMSE in lagged IV estimation are 

significantly larger than those in OLS; besides, in these three cases the likelihood of a 

Type I error is close—and sometimes equal—to one, and significantly higher than those 

in OLS. These results imply that when lagged IV estimation violates both the exclusion 

restriction and the independence assumption, it even aggravates the endogeneity. 

  Figure 5 summarizes simulation results where 𝜉𝜉=0.5 and 2, 𝜌𝜌 = 0.5, and 𝜙𝜙 ranges 

from 0 to 0.9. These simulation results show that  

(1) both 𝛽̂𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 are biased, and the bias of the lagged IV estimate is 

much larger than that of the OLS estimate. This is consistent with our theoretical 

prediction that as the lagged IV violates both the independence assumption and the 

exclusion restriction in Scenario 2, it is much more problematic than the OLS estimate.  

(2) As 𝜙𝜙 increases, the bias of the lagged IV estimate also increases. This is also 

consistent with our theoretical prediction that the lagged IV estimate’s violation of the 

independence assumption is quantified with 𝜙𝜙
𝜅𝜅
, the synchronous change of 𝑈𝑈𝑡𝑡 by 𝑋𝑋𝑡𝑡; 
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as 𝜙𝜙
𝜅𝜅
 increases, the independence assumption is violated to a larger extent and as a 

result, the lagged IV estimate suffers from higher bias.  

(3) As 𝜉𝜉 increases, the bias of the lagged IV estimate also increases. This is also 

consistent with our theoretical prediction that the lagged IV estimate’s violation of the 

exclusion restriction in Scenario 2 is quantified with 𝜉𝜉, the marginal effect of 𝑋𝑋𝑡𝑡−1 on 

𝑌𝑌𝑡𝑡; as 𝜉𝜉 increases, the exclusion restriction is violated to a larger extent and as a result, 

the lagged IV estimate suffers from higher bias.  

(4) The RMSEs show similar patterns as the biases.  

(5) The likelihood of the Type I error is very high, and close to 1. 

  Figure 6 summarizes simulation results where 𝜉𝜉=0.5 and 2, 𝜙𝜙 = 0.5, and 𝜌𝜌 ranges 

from 0 to 0.9. These simulation results show that  

(1) Both 𝛽̂𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 are biased, and the bias of the lagged IV estimate is 

much larger than that of the OLS estimate. This is consistent with our theoretical 

prediction that as the lagged IV violates both the independence assumption and the 

exclusion restriction in Scenario 2, it is much more problematic than the OLS estimate.  

(2) As 𝜌𝜌 increases, the bias of the lagged IV estimate decreases. This shows that 

as the relevance of the lagged IV and the endogenous variable goes up, the validity of 

the lagged IV also goes up.  

(3) As 𝜉𝜉 increases, the bias of the lagged IV estimate also increases. This is also 

consistent with our theoretical prediction that the lagged IV estimate’s violation of the 

exclusion restriction in Scenario 2 is quantified with 𝜉𝜉, the marginal effect of 𝑋𝑋𝑡𝑡−1 on 

𝑌𝑌𝑡𝑡; as 𝜉𝜉 increases, the exclusion restriction is violated to a larger extent and as a result, 

the lagged IV estimate suffers from higher bias.  

(4) The RMSEs show similar patterns as the biases.  

(5) The likelihood of the Type I error is very high, and close to 1. 

  Figure 8 shows simulation results where 𝜓𝜓=0.5 and 2, 𝜌𝜌 = 0.5, and 𝜙𝜙 ranges from 

0 to 0.9. These results show that  

(1) both 𝛽̂𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 are biased, and the bias of the lagged IV estimate is 

much larger than that of the OLS estimate. This is consistent with our theoretical 

prediction that as the lagged IV violates both the independence assumption and the 

exclusion restriction in Scenario 3, it is much more problematic than the OLS estimate.  

(2) As 𝜙𝜙 increases, the bias of the lagged IV estimate also increases. This is also 

consistent with our theoretical prediction that the lagged IV estimate’s violation of the 
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independence assumption is quantified with 𝜙𝜙
𝜅𝜅
, the synchronous change of 𝑈𝑈𝑡𝑡 by 𝑋𝑋𝑡𝑡; 

as 𝜙𝜙
𝜅𝜅
 increases, the independence assumption is violated to a larger extent and as a 

result, the lagged IV estimate suffers from higher bias.  

(3) As 𝜓𝜓 increases, the bias of the lagged IV estimate also increases. This is also 

consistent with our theoretical prediction that the lagged IV estimate’s violation of the 

exclusion restriction in Scenario 3 is quantified with 𝜓𝜓, the marginal effect of 𝑋𝑋𝑡𝑡−1 

on 𝑈𝑈𝑡𝑡; as 𝜓𝜓 increases, the exclusion restriction is violated to a larger extent and as a 

result, the lagged IV estimate suffers from higher bias.  

(4) The RMSEs show similar patterns as the biases. (5) The likelihood of the Type 

I error is very high, and close to 1. 

  Finally, Figure 9 shows simulation results where 𝜓𝜓=0.5 and 2, 𝜙𝜙 = 0.5, and 𝜌𝜌 

ranges from 0 to 0.9. These results show that  

(1) both 𝛽̂𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 are biased, and the bias of the lagged IV estimate is 

much larger than that of the OLS estimate. This is consistent with our theoretical 

prediction that as the lagged IV violates both the independence assumption and the 

exclusion restriction in Scenario 3, it is much more problematic than the OLS estimate.  

(2) As 𝜌𝜌 increases, the bias of the lagged IV estimate decreases. This shows that 

as the relevance of the lagged IV and the endogenous variable goes up, the validity of 

the lagged IV also goes up.  

(3) As 𝜓𝜓 increases, the bias of the lagged IV estimate also increases. This is also 

consistent with our theoretical prediction that the lagged IV estimate’s violation of the 

exclusion restriction in Scenario 3 is quantified with 𝜓𝜓, the marginal effect of 𝑋𝑋𝑡𝑡−1 

on 𝑈𝑈𝑡𝑡; as 𝜓𝜓 increases, the exclusion restriction is violated to a larger extent and as a 

result, the lagged IV estimate suffers from higher bias.  

(4) The RMSEs show similar patterns as the biases.  

(5) The likelihood of the Type I error is very high, and close to 1. 

 

V. CONCLUSION 

  We have looked at the practice of using a lagged endogenous variable to use it as an 

instrumental variable for the same endogenous variable—a practice we have dubbed 

“lagged IV” for brevity. Given our discussion of the independence assumption and 

exclusion restriction, our main result is that if the lagged IV satisfies the exclusion 
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restriction (which assumes no causal influence), then the lagged IV method is 

acceptable and helpful, as its estimate is consistent and is less biased than the OLS 

estimate. A violation of independence assumption, however, results in a high likelihood 

that the lagged IV will lead to a Type I error. If the lagged IV violates both the 

independence assumption and the exclusion restriction, the resulting estimate is 

unambiguously inconsistent, and is much more biased than the OLS estimate. 

  When using a lagged IV, most applied researchers fail to discuss the independence 

assumption and the exclusion restriction in details, assuming empirically that the lagged 

IV method can at the very least yield estimates whose bias is less than that of OLS. Our 

simulation results show that this only obtains in a very narrow range of cases. Worse, a 

lagged IV always significantly increases the likelihood of a Type I error. 

 In the absence of experimental data, causal inference requires either (i) that the 

assumption of selection on observables be satisfied (i.e., that all back-door paths 

between the treatment and outcome variable are successfully blocked), (ii) that the data 

include a mediator variable between the treatment and outcome variables which satisfy 

the requirements of the front-door criterion (Pearl 1995, 2000, 2009; Bellemare, Bloem, 

and Wexler 2020), or (iii) that the data include a valid IV (i.e., a variable that satisfies 

the requirements we have laid out at the very beginning of this paper). The results in 

this paper show that in the latter case, using a lagged endogenous variable is unlikely 

to lead to credible estimates, and so the practice of using lagged IVs should be 

discontinued. 
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Appendix 
 

A.I. Derivation of 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑈𝑈) 

In Scenario 1 and 2, following the appendix of Bellemare et al. (2017), we have, given 

the equations (3.2) and (3.3), or (3.17) and (3.18), the expression that 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡−1) = 𝐶𝐶𝐶𝐶𝐶𝐶 �
1
𝜌𝜌
𝑋𝑋𝑡𝑡 −

𝜅𝜅
𝜌𝜌
𝑈𝑈𝑡𝑡 −

1
𝜌𝜌
𝜂𝜂𝑡𝑡 ,

1
𝜙𝜙
𝑈𝑈𝑡𝑡 −

1
𝜙𝜙
𝜐𝜐𝑡𝑡� (A. 1) 

  Then we have 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡−1) =
1
𝜙𝜙𝜙𝜙

[𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡) − 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑈𝑈𝑡𝑡)] 

which yields 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡) − 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑈𝑈𝑡𝑡) = 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡−1) (A. 2) 

  Since 𝜌𝜌,𝜙𝜙 ∈ (0,1) , both 𝑋𝑋  and 𝑈𝑈  are mean-reverting series, that is, the 

covariance between 𝑋𝑋 and 𝑈𝑈 does not depend on 𝑡𝑡. In other words, asymptotically, 

we have 

𝑝𝑝 lim
𝑡𝑡→∞

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡) = 𝑝𝑝 lim
𝑡𝑡→∞

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡−1) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑈𝑈) (A. 3) 

  Therefore, (A.2) becomes 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑈𝑈) − 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑈𝑈) = 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑋𝑋,𝑈𝑈) (A. 4) 

implying that 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑈𝑈) =
𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑈𝑈)
1 − 𝜙𝜙𝜙𝜙

(A. 5) 

  In Scenario 3, similarly, we have, given the equations (3.26) and (3.27), the 

expression that 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡−1) = 𝐶𝐶𝐶𝐶𝐶𝐶 �
1
𝜌𝜌
𝑋𝑋𝑡𝑡 −

𝜅𝜅
𝜌𝜌
𝑈𝑈𝑡𝑡 −

1
𝜌𝜌
𝜂𝜂𝑡𝑡 ,

1
𝜙𝜙
𝑈𝑈𝑡𝑡 −

𝜓𝜓
𝜙𝜙
𝑋𝑋𝑡𝑡−1 −

1
𝜙𝜙
𝜐𝜐𝑡𝑡� (A. 6) 

  Then we have 

            𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡−1) 

=
1
𝜙𝜙𝜙𝜙

[𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡) − 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓(𝑋𝑋𝑡𝑡,𝑋𝑋𝑡𝑡−1) − 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑈𝑈𝑡𝑡) + 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)] (A. 7) 

which yields 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡) − 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓(𝑋𝑋𝑡𝑡,𝑋𝑋𝑡𝑡−1) − 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑈𝑈𝑡𝑡) + 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
= 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡−1) (A. 8) 

  Similarly, since 𝜌𝜌,𝜙𝜙 ∈ (0,1), both 𝑋𝑋 and 𝑈𝑈 are mean-reverting series, that is, the 

covariance between 𝑋𝑋 and 𝑈𝑈 does not depend on 𝑡𝑡. In other words, asymptotically, 

we have 
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𝑝𝑝 lim
𝑡𝑡→∞

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡) = 𝑝𝑝 lim
𝑡𝑡→∞

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡−1) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑈𝑈) (A. 9) 

  We also know that 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑋𝑋𝑡𝑡−1) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝜌𝜌𝑋𝑋𝑡𝑡−1 + 𝜅𝜅𝑈𝑈𝑡𝑡 + 𝜂𝜂𝑡𝑡 ,𝑋𝑋𝑡𝑡−1) 

= 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌(𝑋𝑋) + 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡) 

and that 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝜙𝜙𝑈𝑈𝑡𝑡−1 + 𝜓𝜓𝑋𝑋𝑡𝑡−1 + 𝜐𝜐𝑡𝑡) 

= 𝜙𝜙 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑈𝑈) + 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓(𝑋𝑋) 

  Therefore, (A.8) becomes 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑈𝑈) − 𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑈𝑈) − 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓(𝑋𝑋) = 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑋𝑋,𝑈𝑈) (A. 10) 

implying that 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋,𝑈𝑈) =
𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅(𝑈𝑈) + 𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓(𝑋𝑋)

1 − 𝜙𝜙𝜙𝜙
(A. 11) 

  Therefore, 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑡𝑡−1) =

𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑈𝑈) + 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑋𝑋)
(1− 𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) + 𝜓𝜓

                          =
𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙(𝑈𝑈)

(1 − 𝜙𝜙𝜙𝜙)𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) +
𝜓𝜓

1 − 𝜙𝜙𝜙𝜙
(A. 12)
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Table 1. Reviewed Journals Published in 2013-2018, Using Lagged IV Methods 

Journal Name Discipline 2013-2018 2015-2018 

American Economic Review Economics 5 3 

Econometrica Economics 0 0 

Journal of Political Economy Economics 1 0 

Quarterly Journal of Economics Economics 3 2 

Review of Economic Studies Economics 3 1 

Review of Economics & Statistics Economics 7 2 

American Political Science Review Political Science 1 0 

American Journal of Political Science Political Science 1 1 

British Journal of Political Science Political Science 6 4 

Comparative Political Studies Political Science 3 1 

Journal of Politics Political Science 1 0 
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Table 2. Simulation Parameters 

Parameters Causal Pathway Simulation Values 

Basic Parameters   

𝛽𝛽 𝑋𝑋𝑡𝑡 → 𝑌𝑌𝑡𝑡 {0, 2} 

𝛿𝛿 𝑈𝑈𝑡𝑡 → 𝑌𝑌𝑡𝑡 {1} 

Key Parameters   

𝜙𝜙 𝑈𝑈𝑡𝑡−1 → 𝑈𝑈𝑡𝑡 {0, 0.1, 0.2,…,0.9}, {0.5} 

𝜌𝜌 𝑋𝑋𝑡𝑡−1 → 𝑋𝑋𝑡𝑡 {0.5}, {0, 0.1, 0.2,…,0.9} 

𝜅𝜅 𝑈𝑈𝑡𝑡 → 𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡−1 → 𝑋𝑋𝑡𝑡−1 {0.5, 2} 

𝜉𝜉 𝑋𝑋𝑡𝑡−1 → 𝑌𝑌𝑡𝑡 {0.5, 2} 

𝜓𝜓 𝑋𝑋𝑡𝑡−1 → 𝑈𝑈𝑡𝑡 {0.5, 2} 
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Figure 1. Representation of Monte Carlo Simulation Setup 
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Figure 2. Monte Carlo Results: 𝜅𝜅=0.5 and 2, 𝜙𝜙 ranges from 0 to 1, 𝜌𝜌 = 0.5 
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Figure 3. Monte Carlo Results: 𝜅𝜅=0.5 and 2, 𝜌𝜌 ranges from 0 to 1, 𝜙𝜙 = 0.5 
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Figure 4. Representation of Monte Carlo Simulation Setup: 𝑋𝑋𝑡𝑡−1 Also Has Causal 

Effects on 𝑌𝑌𝑡𝑡 
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Figure 5. Monte Carlo Results: 𝜅𝜅=0.5 and 2, 𝜙𝜙 ranges from 0 to 1; Lagged Causality on Outcome variable 
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Figure 6. Monte Carlo Results: 𝜅𝜅=0.5 and 2, 𝜌𝜌 ranges from 0 to 1; Lagged Causality on Outcome variable 
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Figure 7. Representation of Monte Carlo Simulation Setup: 𝑋𝑋𝑡𝑡−1 Also Has Causal 

Effects on 𝑈𝑈𝑡𝑡 
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Figure 8. Monte Carlo Results: 𝜅𝜅=0.5 and 2, 𝜙𝜙 ranges from 0 to 1; Lagged Causality on Unobserved Confounder 
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Figure 9. Monte Carlo Results: 𝜅𝜅=0.5 and 2, 𝜌𝜌 ranges from 0 to 1; Lagged Causality on Unobserved Confounder 
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