
1 
 

A PRIMER ON LINEAR REGRESSION 
Marc F. Bellemare∗ 

Introduction 
This set of lecture notes was written to allow you to understand the classical linear regression model, which 
is one of the most common tools of statistical analysis in the social sciences. Among other things, a regression 
allows the researcher to estimate the impact of a variable of interest 𝐷𝐷 on an outcome of interest 𝑦𝑦 holding 
other included factors 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝐾𝐾) constant. For the purposes of this discussion, let 𝐷𝐷 measure a given 
policy, 𝑦𝑦 measure welfare, and the vector 𝑥𝑥 measure the various control variables the researcher has seen fit 
to include. 
 

Example 
For example, one might be interested in the impact of individuals’ years of education 𝐷𝐷 on their wage 𝑦𝑦 while 
controlling for age, gender, race, state, sector of employment, etc. in 𝑥𝑥. Generally, social science research is 
interested in the impact of a specific variable of interest on an outcome of interest, i.e., in the impact of 𝐷𝐷 on 
𝑦𝑦. 
 

Mechanics 
The regression of 𝑦𝑦 on (𝐷𝐷,𝑥𝑥1, … ,𝑥𝑥𝐾𝐾) is typically written as 

 𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 +⋯+ 𝛽𝛽𝐾𝐾𝑥𝑥𝐾𝐾𝑖𝑖 + 𝛾𝛾𝐷𝐷𝑖𝑖 + 𝜖𝜖𝑖𝑖,       (1) 

where i denotes a unit of observation. In the example of wages and education, the unit of observation would 
be an individual, but units of observations can be individuals, households, plots, firms, villages, communities, 
countries, etc. Just as the research question should drive the choice of what to measure for 𝑦𝑦, 𝐷𝐷, and 𝑥𝑥, the 
research question also drives the choice of the relevant unit of observation. 

When estimating equation 1, the researcher will have data on 𝑁𝑁 units of observations, so 𝑖𝑖 = 1, … ,𝑁𝑁. 
Alternatively, we say that 𝑁𝑁 is the sample size. For each of those 𝑁𝑁 units, the researcher will have data on 𝑦𝑦, 
𝐷𝐷, and 𝑥𝑥. In other words, we will ignore the problem of missing data, as observations with missing data are 
usually dropped by most statistical packages. 

The role of regression analysis is to estimate the coefficients (𝛼𝛼,𝛽𝛽1, … ,𝛽𝛽𝐾𝐾 , 𝛾𝛾). To differentiate the “true” 
coefficients from coefficient estimates, we will use a circumflex accent (i.e., a “hat”) to denote estimated 
coefficients. Therefore, the estimated (𝛼𝛼,𝛽𝛽1, … ,𝛽𝛽𝐾𝐾 , 𝛾𝛾) will be denoted (𝛼𝛼�, �̂�𝛽1, … , �̂�𝛽𝐾𝐾 , 𝛾𝛾�). 

Going back to our interest in estimating the impact of 𝐷𝐷 on 𝑦𝑦 at the margin, this impact is represented in the 
context of equation 1 by the parameter 𝛾𝛾. Indeed, if you remember your partial derivatives, the marginal 
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impact of 𝐷𝐷 on 𝑦𝑦 at is equal to 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛾𝛾. Moreover, the partial derivative is such that only 𝐷𝐷 varies. In other 

words, 𝛾𝛾 measures the impact of a change in 𝐷𝐷 on 𝑦𝑦 holding everything else constant, or ceteris paribus. In 
this case, what we mean by “everything else” is limited only to the factors that are included in the vector 𝑥𝑥 of 
control variables. Whatever is not included among the variables 𝑥𝑥 is not held constant by regression analysis. 

Indeed, the relationship in equation 1 is not deterministic in the sense that even if we have data for 𝑦𝑦, 𝐷𝐷, and 
𝑥𝑥 and credible parameter estimates (𝛼𝛼�, �̂�𝛽1, … , �̂�𝛽𝐾𝐾 , 𝛾𝛾�), we will still not be able to perfectly forecast for 𝑦𝑦. That 
is because there are several things about any given problem that we, as social science researchers, do not 
observe and are not privy to. Individuals have intrinsic motivations that even they may have difficulty 
expressing. Individuals make errors. Individuals experience unforeseen events. There are factors which are 
very important in determining 𝑦𝑦 but which we simply do not observe. 

For all these reasons, we add an error term 𝜖𝜖 at the end of equation 1. The error term simply represents our 
ignorance about the problem. As such, it includes all of the things that we did not think of including on the 
right-hand side of equation 1, as well as all of the things that we could not include on the right-hand side of 
equation 1. The error term 𝜖𝜖 thus embodies our ignorance about the relationship between two variables. 

So how does a linear regression actually work? To take an example I know well, suppose we are looking at 
only two variables: rice yield (i.e., kg/are), which will be our outcome of interest 𝑦𝑦 since it represents 
agricultural productivity, and cultivated area (number of ares, or hundredths of a hectare, or 100 square 
meters), which will be our variable of interest 𝐷𝐷. Indeed, the inverse relationship between farm or plot size 
and productivity has been a longstanding empirical puzzle in development microeconomics (Barrett et al., 
2010). So, plotting some data on this question, we get the following figure. 

The scatter plot in figure 1 directly shows that the relationship between yield and cultivated area is not 
deterministic. That is, the relationship between the two variables is not a straight line, and the fact that the 
relationship is scattered indicates that there are other factors besides cultivated area that contributed to 
determining rice productivity. 

The role of the regression – and, as we will soon understand, of the error term – is to linearly approximate as 
best as possible the relationship between two variables. In other words, to do something that looks like the 
red line in figure 2. 
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Figure 1. Rice Productivity Scatter 

 

Figure 2. Rice Productivity Scatter and Regression Line 
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Note that we indeed find an inverse relationship between plot size and productivity, since the regression line 
slopes downward, which means that in this context, 𝛾𝛾� < 0. Indeed, running a simple regression of rice yield 
on cultivated area yields 𝛼𝛼� = 4.187 (and we can see from the graph that 4.187 would indeed be the value of 
rice productivity at a cultivated area of zero ares) and 𝛾𝛾� = −0.356, with both coefficients statistically 
different from zero at less than the 1 percent level (i.e., there is a less than one percent chance 𝛼𝛼 and 𝛾𝛾 are 
no different from zero). In other words, the finding here is that on average,  

 𝑦𝑦 = 4.187− 0.356𝐷𝐷,         (2) 

or for every 1 percent increase in cultivated area, rice productivity decreases by 0.356 percent. This may 
seem counterintuitive, but remember that productivity is not total output – it is only a measure of average 
productivity on the plot. 

So how does the apparatus of the linear regression determine the value of the intercept and the value of the 
slope of the regression line in figure 2? This is where our error term comes into play. Indeed, a linear 
regression will choose, among all possible lines, the one that minimizes the sum of the distances between 
each point in the scatter and the line itself, under the assumption that the error is on average equal to zero 
(i.e., that our predictions are right on average). Assuming that the error term is equal to zero on average and 
minimizing the sum of all point-line distances (technically, the sum of squared errors) allows us to obtain 
estimates 𝛼𝛼� and 𝛾𝛾� of the true parameters 𝛼𝛼 and 𝛾𝛾. 

A few remarks are in order. First off, note that the constant term (or the intercept) 𝛼𝛼 does not have an 
economic interpretation in this case, since a cultivated area of zero really entails a yield of zero. Second, since 
the only factor we included on the right-hand side of equation 1 was cultivated area, the error term includes 
a lot of things which may be potentially crucial in determining yield. For example, the plot’s position on the 
toposequence, the quality of the soil, the source of irrigation of the plot, various characteristics of the 
household operating the plot, etc. So because we are typically interested in the impact of 𝐷𝐷 on 𝑦𝑦 controlling 
for a number of factors 𝑥𝑥, regression results will not be presented in the form of figure 2. Indeed, regression 
results are typically presented in the form of table 1 at the end of this document. 

How do we interpret table 1? First off, note that N = 466. That is, we have data on 466 plots. The first column 
tells us what variables are included on the right-hand side of equation 1, viz. cultivated area; land value; total 
land owned by the household; household size (number of individuals); household dependency ratio 
(proportion of dependents within the household); whether the household head is a single female or a single 
male; whether the plot is irrigated by a dam, a spring, or rainfed; soil quality measurements (carbon, 
nitrogen, potassium percentages; soil pH; clay, silt, and sand percentages); and an intercept. The second 
column shows the estimated coefficients for the first specification of equation 1 (in this case, a pooled cross-
section of all the plots and all the households, i.e., a specification which ignores the fact that some 
households own more than just one plot in the sample); and the third column shows the standard errors 
around each estimated coefficient.  

These standard errors are used to determine whether each coefficient is statistically significantly different 
from zero or not. To make life simpler, table 1 shows whether coefficients are significant at the 10, 5, or 1 
percent levels by using the symbols *, **, and *** respectively. Note that in all cases, there is a (significant) 
inverse relationship between cultivated area and rice productivity. 
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Taking column 1 as an example of how to interpret regression results, what can we say? First and foremost, 
note that for a 1 percent increase in cultivated area, there is an associated productivity decrease of 0.27 
percent (alternatively, a doubling of the size of the plot would be associated with a 27-percent decrease in 
productivity). Moreover, we can note three things. First off, the more valuable a plot, the more productive it 
is; second, plots irrigated by a dam are more productive than plots without any irrigation; and third, plots 
irrigated by a spring are more productive than plots without any irrigation. In fact, comparing the magnitude 
of the coefficient estimates for irrigation by a dam and irrigation by a spring, we see that the impacts of these 
two types of irrigation are essentially the same. 

Another thing of note in table 1 is how the coefficient on the variable of interest changes depending on what 
is included on the right-hand side of equation 1. Comparing the first two specifications (i.e., pooled cross-
section vs. household fixed effects), note how the magnitude of the inverse relationship between 
productivity and cultivated area is reduced from -0.271 to -0.176 when household fixed effects (i.e., controls 
for household-specific unobservables characteristics, which is made possible here because there are 286 
households for 466 plots; in other words, there are some households who own more than one plot in the 
sample) are included. This indicates that a great deal of the inverse relationship can be attributed to 
household-specific, otherwise unobservable factors. Likewise, comparing specifications 1 and 3 (i.e., pooled 
cross-section vs. soil quality), note again how the magnitude of the inverse relationship between productivity 
and cultivated area is reduced from -0.271 to -0.265 when soil quality measurements are included. Overall, 
this indicates that household-specific, unobserved factors are more important in driving the inverse 
relationship than the omission of soil quality measurements. In any event, a comparison of specifications 1 
and 2 and of specifications 1 and 3 point to an important endogeneity problem (in this case, an omitted 
variables problem) caused by the omission, respectively, of household fixed effects and of soil quality 
measurements. 
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Table 1 – Yield Approach Estimation Results (n=466) 
 (1) 

Pooled Cross-Section 
(2) 

Household Fixed Effects 
(3) 

Soil Quality 
(4) 

Household Fixed Effects and  
Soil Quality 

Variable Coefficient (Std. Err.) Coefficient (Std. Err.) Coefficient (Std. Err.) Coefficient (Std. Err.) 
Dependent Variable: Rice Yield (Kilograms/Are) 

Cultivated Area -0.271*** (0.038) -0.176*** (0.046) -0.265*** (0.048) -0.187*** (0.052) 
Total Land Area -0.055 (0.038)   -0.054 (0.047)   
Land Value 0.183*** (0.031) 0.303*** (0.069) 0.176*** (0.032) 0.287*** (0.063) 

Household Characteristics         
Household Size -0.007 (0.009)   -0.008 (0.008)   
Dependency Ratio -0.073 (0.130)   -0.083 (0.144)   
Single Female -0.056 (0.111)   -0.070 (0.119)   
Single Male 0.133 (0.134)   0.122 (0.155)   

Plot Characteristics         
Irrigated by Dam 0.389** (0.171) 0.228 (0.202) 0.450** (0.211) 0.545 (0.402) 
Irrigated by Spring 0.365** (0.175) 0.250 (0.214) 0.425** (0.214) 0.541 (0.389) 
Irrigated by Rain 0.184 (0.180) 0.024 (0.217) 0.249 (0.220) 0.313 (0.431) 

Soil Quality Measurements         
Carbon     -1.361 (1.510) -0.001 (1.844) 
Nitrogen     1.668 (1.781) -0.007 (2.750) 
pH     -1.064 (7.163) -17.969 (14.459) 
Potassium     1.183 (1.412) -5.528* (3.035) 
Clay     0.293 (3.115) -5.183 (4.174) 
Silt     0.521 (5.751) 4.485 (11.681) 
Sand     -0.135 (5.607) 5.261 (7.106) 

Intercept -1.847*** (0.372) -3.162*** (0.694) -2.276 (1.552) -3.328*** (0.819) 
Number of Households – 286 – 286 
Bootstrap Replications – – 500 500 
Village Fixed Effects Yes Dropped Yes Dropped 
R2 0.45 0.97 0.46 0.97 
p-value (All Coefficients) 0.00 0.00 0.00 0.00 
p-value (Fixed Effects) – 0.00 – 0.00 
p-value (Soil Quality) – – 0.79 0.52 
***, ** and * indicate statistical significance at the one, five and ten percent levels, respectively. 
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