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Abstract
We present the first application of Pearl’s (1995, 2000) front-door criterion to ob-

servational data in which the required assumptions plausibly hold. For identification,
the front-door criterion relies on the presence of a single, strictly exogenous media-
tor variable on the causal path between the treatment and outcome variables. After
first explaining how to use the front-door criterion in practice, we present empirical
illustrations. Our core application uses data on over 890,000 Uber and Lyft rides in
Chicago to estimate the average treatment effect of the authorization of ride sharing—
that is, the decision to authorize the app to overlap one’s ride with a stranger’s ride—
on tipping behavior. We exploit as mediator the (conditionally) exogenous variation
in whether one actually gets to share a ride, since authorizing a shared ride does
not necessarily result in sharing a ride. Comparing our front-door criterion results
to those of naïve regressions of tipping on the decision to authorize ride sharing, we
find that almost all of the naïve negative relationship between authorizing a shared
ride and tipping is due to selection effects. Finally, we explore the consequences for
applied work of violating some of the assumptions underpinning the front-door cri-
terion approach.

Keywords: Front-Door Criterion, Causal Inference, Causal Identification, Treat-
ment Effects, Ride-Hailing

JEL Codes: C13, C18, R40, D90

∗We thank Chris Auld, Dave Giles, Paul Glewwe, Guido Imbens, Jason Kerwin, Daniel Millimet, Bruce
Wydick, and seminar participants at the World Bank and Michigan State University for useful comments
and suggestions. This research was conducted prior to Jeffrey R. Bloem’s employment at USDA. The find-
ings and conclusions in this manuscript are those of the authors and should not be construed to represent
any official USDA or US Government determination or policy. All remaining errors are ours.
†Corresponding Author. Northrop Professor, Department of Applied Economics, University of Min-

nesota, 1994 Buford Avenue, Saint Paul, MN 55108, Email: mbellema@umn.edu.
‡Research Economist, United States Department of Agriculture, Economic Research Service, MS9999,

Beacon Facility, P. O. Box 419205, Kansas City, MO 64141, Email: Jeffrey.Bloem@usda.gov.
§Ph.D. Student, Humphrey School of Public Affairs, University of Minnesota. 301 19th Ave. S, Min-

neapolis, MN 55455, Email: wexle059@umn.edu.



1 Introduction

We present the first application of Judea Pearl’s (1995, 2000) front-door criterion (FDC)

to observational data in which the required assumptions plausibly hold. The directed

acyclic graph (DAG) in Figure I illustrates the FDC setup,1 where the reduced-form rela-

tionship between outcome variable Y and treatment variable X is biased because of the

presence of unobserved confounders U, which cause both X and Y.

FIGURE I: The Front-Door Criterion
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Pearl’s insight is that when there exists a single mediator variable M on the causal

path from X to Y and that mediator is not caused by U, it is possible to estimate the

average treatment effect (ATE) of X on Y. 2 This is done by (i) estimating the effect γ of

X on M (which is identified because the unobserved confounders in U cause X but not

M), (ii) estimating the effect δ of M on Y conditional on X (which is identified because

the unobserved confounders in U cause Y but not M), and (iii) multiplying the estimates

γ̂ and δ̂ by each other. This last step yields the ATE of X on Y, which we will label β in

keeping with convention. Intuitively, the FDC estimates the ATE because it decomposes

a reduced-form relationship that is not causally identified into two causally identified

relationships.3

1For readers unfamiliar with DAGs, directed arrows (i.e., →) represent causal relationships between
variables. In a DAG, X → Y simply means that Y = f (X, eY), where eY is a error variable independent of
either X or Y. The causal relationship X → Y flowing from X to Y need not be parametric or even linear in
a DAG (Morgan and Winship 2015), but we will focus in this paper on parametric, linear relationships for
simplicity.

2Although the literature often refers to M as a mechanism, we will refer to it as mediator in this paper.
Our view is that the “mechanism” terminology is more accurate when discussing the theoretical framework
underlying an application of the front-door criterion, but the “mediator” terminology is more accurate
when discussing the statistical setup of the front-door criterion, as we do in this paper.

3Some readers may be tempted to use the mediator M as an instrument for the endogenous treatment
X. In Appendix 1, we explain why this is not desirable.
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Despite its relative simplicity, economists have been reluctant to incorporate the front-

door criterion in their empirical toolkit. Anecdotally, that resistance appears to stem from

the fact that finding a convincing empirical application has thus far been elusive (see,

e.g., Imbens 2020). We provide such an application and further address the following

questions: How can the front-door criterion be used in the context of linear regression?4

Additionally, what happens when the necessary assumptions for the front-door criterion

to estimate an average treatment effect do not hold strictly?

In his writings on the front-door criterion, Pearl repeatedly provides the same exam-

ple of an empirical application. In his canonical example, X is a dummy variable for

whether one smokes, Y is a dummy variable for whether one develops lung cancer, and

M is the accumulation of tar in one’s lungs (Pearl 1995; Pearl 2000; Pearl and Mackenzie

2018). Many have been quick to point out that if (i) smoking has a direct effect on lung

cancer, independent on tar accumulation or (ii) both tar accumulation and lung cancer are

caused by alternative sources, such as a hazardous work environment then this canoni-

cal example violates the necessary FDC identifying assumptions (see, e.g., Imbens 2020).

Consequently, the adoption of the FDC has been slow among applied researchers. The

only extant published social science applications of the FDC are by Glynn and Kashin

(2017; 2018).5 We build on these previous contributions, although it is important to note

that the authors of those previous studies themselves admit that the necessary assump-

tions required for credible identification with the FDC approach do not hold.6

Our contribution is threefold. First, because linear regression remains the workhorse

4Gupta et al. (2020) develop a framework to compare a selection-on-observables design and a front-
door criterion design when both are available to the researcher, and discuss the conditions under which
each design can dominate the other.

5In Glynn and Kashin (2018) the authors apply the FDC approach to estimate the effects of attending a
job training program on earnings. In Glynn and Kashin (2017) the authors also apply the FDC difference-
in-differences approach to evaluate the effect of an early in-person voting program on voter turnout. Both
applications closely approximate, but ultimately do not exactly replicate existing experimental estimates.

6Specifically, Glynn and Kashin (2018) write, “As we discuss in detail below, the assumptions implicit
in [the FDC] graph will not hold for job training programs, but this presentation clarifies the inferential
approach.” In Glynn and Kashin (2017), the authors develop a difference-in-difference extension to the
FDC approach which requires an exclusion restriction and a parallel trends assumption specifically for
their empirical setting where the necessary conditions for the FDC do not hold.
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of applied economics and an explanation of how to use the front-door criterion in a re-

gression context has so far been lacking in the literature, we explain how to use the front-

door criterion in practice in the context of linear regression. This leads us to provide the

first documented discussion of the requirement of “double relevance,” wherein both γ̂

and δ̂ must be statistically significant for the front-door criterion to recover the average

treatment effect of X on Y.

Second, we present two examples of the FDC in practice. One uses simulated data to

show an ideal application of the FDC—one where we know the true ATE.7 Our second

example is the core contribution of this paper in that it presents the first application of

the FDC to observational data where the necessary assumptions plausibly hold. In that

application, we estimate the effect on tipping behavior of authorizing a ride-hailing app

such as Lyft or Uber to overlap a ride with another paying passenger. We find that the

observed negative correlation between choosing to share a ride and tipping is almost

entirely explained by selection into treatment—a finding relevant to the economics of

tipping (Azar 2020).

In our application, we are not able to randomly assign whether someone authorizes

shared rides (i.e., X) on Uber or Lyft. Additionally, since the base fare on shared rides is

typically less than that on solo rides, this choice is clearly endogenous to tipping behavior

(i.e., Y). Once a passenger chooses to share a ride, however, they will not necessarily share

a ride. We can therefore exploit the exogenous variation—conditional on fare level and

date, hour, day of the week–hour, and origin–destination fixed effects—in whether or not

a passenger actually shares a ride (i.e., M) once they authorize sharing. In that case, the

front-door criterion can credibly estimate the causal effect of authorizing shared rides on

tipping behavior (i.e., Y).

Third, and more importantly for applied researchers, we explore what happens when

7This simulated example will serve as the basis for our third contribution below, where we explore
departures from the necessary assumption for the front-door criterion to yield the average treatment effect
of X on Y.
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the necessary assumptions for the front-door criterion to identify the average treatment

effect of X on Y fail to hold. Specifically, we look at what happens when (i) there are

multiple mediators, some of which may be omitted from estimation, (ii) the assumption

of strict exogeneity of M is violated, and (iii) the treatment is completely defined by the

mediator.

The remainder of this paper is organized as follows. In section 2, we present the

theory behind the front-door criterion and a “how-to” for economists wishing to broaden

their empirical toolkit by incorporating the front-door criterion. Section 3 presents two

empirical illustrations, one using simulated data and the other using real-world data. In

section 4, we explore departures from some of the assumptions underpinning the FDC.

We conclude in section 5 by offering practical recommendations for using the FDC in

applied work.

2 The Front-Door Criterion: Theory and Practice

We begin this section with a brief presentation of the front-door criterion (FDC) estimand,

discussing the requirements identified by Pearl (1995, 2000) as necessary for the FDC to

estimate the ATE. We then offer our first contribution by explaining how to use the FDC

in a linear regression context. We also identify a further requirement which needs to be

met for the FDC to recover the ATE—that of “double relevance.”

2.1 Theory

We are interested in estimating E[Y|X], the ATE of X on Y in Figure I above. Recall

that with observational data, this task is complicated by the presence of unobserved con-

founders, U, which give rise to the identification problem. Given the validity of a number

of identifying assumptions, however, the FDC approach pictured in Figure I allows for

unbiased estimates of causal effects.

4



As discussed in Pearl (1995, 2000), the FDC requires that there exists a variable M that

satisfies the following conditions relative to X and Y:

(i) The only way in which X influences Y is through M. In Figure I, this means

that there should be no arrows (which represent causal relationships) bypass-

ing M between X and Y. In Pearl’s terminology, M should intercept all di-

rected paths from X to Y.

(ii) The relationship between X and M is not confounded by unobserved vari-

ables, i.e., the coefficient γ = E[M|X] in Figure I is identified. In Pearl’s termi-

nology, there can be no back-door path between X and M.

(iii) Conditional on X, the relationship between M and Y is not confounded

by unobserved variables, i.e., the coefficient δ = E[Y|M, X] in Figure I is iden-

tified. In Pearl’s terminology, every back-door path between M and Y has to

be blocked by X.8

As in Pearl (1995), we derive the FDC estimand in three steps, with the goal being to

compute P(Y|do(X)) with observable variables,9 where P(Y|do(X)) represents the causal

effect of X on Y.10 Because observing do(X) is unlikely outside of a randomized experi-

ment, our goal here is to restate P(Y|do(X)) using only observational variables.

The first step is to compute P(M|do(X)). Here we make use of condition (ii), i.e., there

is no back-door path between X and M, and so the relationship between X and M is

identified. When that condition holds, we can write

P(M|do(X)) = P(M|X), (1)

8This condition is conceptually equivalent to the ignorability assumption required for matching estima-
tors to estimate treatment effects (Rosenbaum and Rubin 1983). Indeed, recall that a nonrandom treatment
can be considered ignorable if confounders are removed. Effectively, ignorability is upheld if the treatment
is “as good as random,” conditional on confounders. In this sense, it is similar to exogeneity of treatment.

9For readers who are not familiar with the do(·) notation, Pearl (2000) introduces do(·) as shorthand for
a variable that is randomly assigned. Thus, do(X) should be read “X is (as good as) randomly assigned.”

10This should be contrasted with P(Y|X), which may not represent the causal effect of X on Y due to the
presence of the unobserved confounder U.
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given that in this case, the unobserved confounder U affecting X but not M makes the

two sides of Equation 1 equivalent.

The second step is to compute P(Y|do(M)). Here we cannot set do(M) = M because

there is a back-door path from M to Y, via X. To block this path we can make use of

condition (iii), conditional on X, the relationship between M and Y is not confounded by

unobserved variables. In that case, by controlling for and summing over all values Xi of

X, we can write

P(Y|do(M)) = ∑
X

P(Y|X, do(M))× P(X|do(M)) (2)

where the right-hand-side of Equation 2 involves two expressions involving do(M). The

second term on the right-hand-side of Equation 2 can be reduced to P(X) because, as

stated by condition (i), the only way in which X influences Y is through M. The first term

on the right-hand-side of Equation 2 can be expressed as P(Y|X, M) because, as stated by

condition (iii), conditional on X, the relationship between M and Y is not confounded.

Therefore, we can write

P(Y|do(M)) = ∑
X

P(Y|X, M)× P(X). (3)

The third and last step is to combine the two effect estimates, P(M|do(X)) from Equa-

tion 1 and P(Y|do(M)) from Equation 2, in order to compute P(Y|do(X))—the average

treatment effect of X on Y.

To start, we express P(Y|do(X)) in terms of do(X) by controlling for and summing

over all values of Mi of M. This allows us to write

P(Y|do(X)) = ∑
M

P(Y|M, do(X))× P(M|do(X)). (4)

Condition (iii) allows us to rewrite M as do(M) in the first term on the right-hand-side of
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Equation 4. Since, conditional on X, the relationship between M and Y is not confounded,

the variation in M is conditionally exogenous. Additionally, as stated by condition (i), the

only way in which X influences Y is through M, and so we can remove do(X) from the

first term on the right-hand side of Equation 4. Put differently, M should have no effect

on X, because X causes M and not vice versa in Figure I. Therefore, we can rewrite the

first term on the right-hand side of Equation 4 as

P(Y|M, do(X)) = P(Y|do(M), do(X)) = P(Y|do(M)). (5)

Recall that Equation 3 states that P(Y|do(M)) = ∑X P(Y|X, M) × P(X) and Equation

1 states that P(M|do(X)) = P(M|X). Therefore, plugging Equation 3 into Equations 4

and 5, and plugging Equation 1 into Equation 4 gives us the FDC estimand as originally

derived by Pearl (1995). That estimand is such that

P(Y|do(X)) = ∑
M

P(M|X)×∑
X′

P(Y|X′, M)× P(X′). (6)

Conceptually, the FDC approach works by first estimating the effect of X on M, and then

estimating the effect of M on Y holding X constant. Both of these effects are unbiased

because nothing confounds the effect of X on M and X blocks the only back-door path

between M on Y. Multiplying these effects by one another yields the FDC estimand.

Pearl (2000) makes one more assumption. This assumption states that P(Xi|Mi) > 0.

This implies that no matter the value of the mediator is for unit i, that unit has to have a

nonzero probability of getting treated. This means that the mediator M cannot be entirely

defined by the treatment X. In Pearl’s canonical example of the relationship between

smoking X and lung cancer Y, this assumption implies that the amount of tar in the lungs

of smokers M must be the the result not only of smoking, but also of other factors (e.g.,

exposure to environmental pollutants), and that tar be absent from the lungs of some

smokers (say, because of an extremely efficient tar-rejecting mechanism). We will discuss
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this assumption in more detail in Section 4.

2.2 Practice

We now discuss how to empirically estimate treatment effects using the FDC approach.

When the necessary conditions for the FDC to identify a treatment effect hold, one way

to estimate treatment effects is using the following approach. Let

Mi = κ + γXi + ωi (7)

and

Yi = λ + δMi + φXi + νi. (8)

In Equation 7, following condition (ii) which states that the only way in which X influ-

ences Y is through M the relationship between X and M is identified, since Cov(X, ω) = 0.

In Equation 8, Yi is the outcome variable, which is related to Xi only through Mi. In this

case, following conditions (i) and (iii) which together imply that the only way X influ-

ences Y is through M, and conditional on X, the relationship between M and Y is not

confounded, since Cov(M, ν) = 0. Therefore, estimating Equations 7 and 8 and multiply-

ing the coefficient estimates δ̂ and γ̂ by each other estimates β.11

More formally, one can write

ATEFDC = E[Y|do(X)] = E[δ̂× γ̂] = β̂unbiased. (9)

The conditions under which the proposition in equation 9 must hold are derived as fol-

11Though we have written Equations 7 and 8 as linear equations, recall that directed acyclic graphs such
as the one in Figure I impose no such linear relationships on their constituent variables, nor do they impose
that the relationships be parametric. Again, see Morgan and Winship (2015) for an introduction to directed
acyclic graphs as they are used in causal inference, and see Pearl (2000) for an in-depth treatment.
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lows. The definition of β̂ is:

β̂ =
∑(Xi − X̄)(Yi − Ȳ)

∑(Xi − X̄)2 . (10)

A familiar expansion of equation 10 demonstrates that β̂ = β if Cov(X, ε) = 0, where ε is

the error term in a regression of Y on X. Figure I suggests, however that Cov(X, ε) 6= 0.

Therefore, regressing Y on X will not calculate an unbiased estimate of β. However,

given that the conditions of the FDC hold, the FDC approach can calculate the unbiased

estimate of β.

This can be shown given the following derivation. By subtracting the mean of Yi in

equation 8 and substituting this into equation 10 yields the following augmented defini-

tion of β̂, such that

β̂ =
∑(Xi − X̄)(δ1(Mi − M̄) + φ(Xi − X̄) + (νi − ν̄))

∑(Xi − X̄)2 . (11)

Similarly, by subtracting the mean of Mi in equation 7 and substituting this into equation

11 yields the following augmented definition of β̂, which is now in terms of Xi and the

error terms from equations 7 and 8:

β̂ =
∑(Xi − X̄)(δ(γ(Xi − X̄) + (ωi − ω̄)) + φ(Xi − X̄) + (νi − ν̄))

∑(Xi − X̄)2 . (12)

Equation 12 reduces to the following expression

β̂ = δ× γ + δ
Cov(X, ω)

Var(X)
+ φ +

Cov(X, ν)

Var(X)
. (13)

If Cov(X, ω) = 0, Cov(X, ν) = 0, and φ = 0, then β̂ = δ× γ = β. The exogeneity of M

leads to Cov(X, ω) = 0 and Cov(X, ν) = 0. This assumption is implied by conditions (ii)

and (iii) which together state that the relationship between X and M is not confounded,

and, conditional on X, the relationship between M and Y is not confounded. Finally,

φ = 0 indicates that there is no direct effect of X on Y conditional on both M and the
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unobserved confounder U.12 This ”no direct effect” assumption is implied by condition

(i)—that the only way in which X influences Y is through M.

In section 4, we will examine the consequences of the failure of some of these assump-

tions. Specifically, we will look at what happens when Cov(X, ω) 6= 0 and Cov(X, ν) 6= 0

(i.e., when M is not strictly exogenous) and when φ 6= 0 (i.e., when there is a direct effect

of X and Y). Both of these cases will lead to biased estimates of the ATE defined by the

formula given in Equation 13.

We close this section by documenting an additional empirical requirement– that of

double relevance–which needs to be satisfied for the FDC to estimate β, the ATE of X

on Y. That requirement is that both (i) the estimate γ̂ of the causal effect of X on M,

and (ii) the estimate δ̂ of the causal effect of M on Y be significantly different from zero.

Indeed, it is possible to think of applications where the variables X, M, and Y satisfy

Pearl’s requirements for the FDC to estimate a non-zero ATE of X on Y, but where one

or both of the aforementioned estimated coefficients are not significantly different from

zero.

For instance, one may be interested in estimating the effect of insecticide use on crop

yields. Because insecticide use is endogenous to crop yields, one may be tempted to ex-

ploit rainfall—greater amounts of which washes away more insecticide, depending on

how well crops can retain insecticide when it rains—as a mediator which a prima facie sat-

isfies Pearl’s requirements for the FDC to estimate the ATE. Though this certainly seems

like an intuitive application of the FDC, a regression of rainfall (M) on insecticide use

(X) is bound to yield an estimate of γ̂ statistically equal to zero, and thus an estimate of

β̂ = γ̂× δ̂ also equal to zero—even though the true average treatment effect of insecticide

use on crop yields is almost surely different from zero.

This requirement is akin to the relevance requirement for a valid instrumental variable

12Another way to interpret φ is as the marginal effect of X on Y when controlling for the unobserved
confounder U. Although in practice this is not directly testable, our simulation analysis demonstrate this
result.
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(see, e.g., Imbens and Angrist 1994). Because it requires that two coefficients (i.e., γ̂ and

δ̂) be nonzero, we refer to it as the double relevance requirement for the FDC to estimate the

ATE of X on Y. To our knowledge, this is the first time this empirical requirement of the

FDC is discussed anywhere.

3 Empirical Illustration

We first show empirical results using simulated data. We then demonstrate the first ever

empirical application of the FDC to observational data wherein the required assumptions

plausibly hold. Additionally, in Appendix 3, we replicate the experimental estimates of

Beaman et al. (2013) using the FDC approach.

3.1 Simulation Results

Our simulation setup is as follows. Let Ui ∼ N(0, 1), Zi ∼ U(0, 1), εXi ∼ N(0, 1), εMi ∼

N(0, 1), and εYi ∼ N(0, 1) for a sample size of N = 100, 000 observations. Then, let

Xi = 0.5Ui + εXi, (14)

Mi = ZiXi + εMi, (15)

and

Yi = 0.5Mi + 0.5Ui + εYi. (16)

This fully satisfies Pearl’s (1995, 2000) three criteria for the FDC to be able to estimate

the average treatment effect of X on Y, viz. (i) the only way in which X influences Y

is through M, (ii) the relationship between M and X is not confounded by U, since U

only affects X and not M, and (iii) conditional on X, the relationship between M and Y

is not confounded by U. This simulation setup also satisfies Pearl’s fourth assumption of
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P(Xi|Mi) > 0 and the “double relevance” requirement. By substituting Equation 15 into

Equation 16, it should be immediately obvious to the reader that the true ATE is equal to

0.250 in our simulations.

To show that the FDC estimates the ATE of X on Y, we estimate three specifications.

The first specification, which we refer to as our benchmark specification because it gen-

erates an unbiased estimate of the ATE by virtue of controlling for the unobserved con-

founder U, estimates

Yi = α0 + β0Xi + ζ0Ui + ε0i, (17)

where, because both Xi and Ui are included on the right-hand-side, E(β̂0) = β, i.e., the

true ATE.

Second, we estimate a naïve specification. The naïve specification differs from the

benchmark specification in Equation 17 by failing to control for the presence of the unob-

served confounder.

The last specification, which we refer to as our front-door specification, estimates

Mi = κ0 + γ0Xi + ω0i (18)

Yi = λ0 + δ0Mi + φ0Xi + ν0i (19)

where the unobserved confounder Ui does not appear anywhere, but because the nec-

essary assumptions for the FDC to identify the ATE hold, E(γ̂0 · δ̂0) = β, i.e., the true

ATE.

Column 1 of Table I shows estimation results for Equation 17, our benchmark specifi-

cation. Column 2 shows estimation results for our naïve specification. Columns 3 and 4

show estimation results respectively for the front-door specification in Equations 18 and

19, respectively. The line labeled “Estimated ATE” shows estimates of the ATE for each

of those three specifications. Unsurprisingly, the estimates of the ATE in columns 1 and 2

differ markedly, as the former controls for Ui but the latter does not: β̂ is equal to 0.252 in

12



TABLE I: Simulation Results

Benchmark Naïve Front-Door Direct
Effect

Variables Y Y M Y Y
(1) (2) (3) (4) (5)

Treatment (X) 0.252*** 0.454*** 0.507*** 0.200*** -0.003
(0.004) (0.003) (0.003) (0.004) (0.004)

Mediator (M) – – – 0.502*** 0.500***
(0.003) (0.003)

Confounder (U) 0.499*** – – – 0.501***
(0.004) (0.004)

Intercept -0.004 -0.005 -0.004 -0.003 -0.003
(0.004) (0.004) (0.003) (0.004) (0.003)

Estimated ATE 0.252*** 0.454*** 0.254*** –
(0.004) (0.003) (0.002)

Observations 100,000 100,000 100,000 100,000
Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
The front-door equations in columns (3) and (4) are estimated by seem-
ingly unrelated regressions. The standard error for the front-door ATE is
estimated by the delta method.

the benchmark case, but it is near double that at 0.454 in the naïve case.

Given the derivations above, it should also be unsurprising that the ATE estimate

generated by multiplying the coefficient on treatment in column 3 by the coefficient on the

mediator in column 4 is equal to 0.254. Assuming the ATE in column 1 is not correlated

with the ATE computed from columns 3 and 4, the benchmark and front-door ATEs are

statistically identical. In both cases, the estimated ATE is not statistically different from

its true value of 0.250.

Finally, column 5 in Table I serves an illustrative purpose. It shows that conditional

on the mediator (M) and the unobserved confounder (U), the coefficient on the treatment

(X) is statistically indistinguishable from zero. This result highlights the “no direct effect”

assumption that is implied by the FDC conditions in Figure I and by equation 13.
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3.2 Real-World Application: Ride Sharing and Tipping Behavior

Using publicly available data on approximately 890,000 Uber and Lyft rides in Chicago

during the period June 30 to September 30, 2019, we use the FDC to estimate the ATE

of authorizing a shared ride on tipping at both the extensive (i.e., whether the passenger

tips) and intensive margins (i.e., how much the passenger tips). We find that naïve re-

gressions overestimate the ATE of authorizing sharing on both tipping margins because

of selection into treatment. We show that the necessary conditions for the FDC to yield a

consistent ATE apply in this scenario after conditioning on relevant observed variables.

Although sharing-authorized rides are not determined exogenously, whether a passen-

ger actually ends up sharing a ride with another is plausibly exogenous conditional on

several observable factors.

3.2.1 Background

Examining 40 million UberX trips during the summer of 2017, Chandar et al. (2019) find

that “demand-side” factors that capture an individual consumer’s propensity to tip ex-

plain more of the variation in tipping than “supply-side” factors such as driver or ride

quality. By examining only UberX rides, however, Chandar et al. (2019) omit a key deter-

minant of tipping: Whether a passenger opts to share a ride. After opening her Uber app,

a passenger can select either UberX or UberPool, an option that allows for one’s ride to

overlap with the rides of more than one passenger in the same vehicle (Hemel 2017). Lyft

offers a similar service called Lyft Line. Fares for both services are charged up front and

are calculated according to the probability a given passenger ends up sharing a hailed

vehicle with another stranger. Discounts from the single passenger “base fare” are set

for sharing-authorized rides such that rides more likely to overlap with another passen-

ger’s trip are cheaper, relative to the base fair. Notably, the higher the stated fare for a

single-passenger ride, the more likely a passenger is to authorize sharing (Wu et al. 2018).

Using an earlier version of the same data we use here, data-analytics firm CompassRed
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(2019) finds that when riders opt to share rides with another passenger using the Lyft Line

or UberPool services, they are less likely to tip. In the context of the potential outcomes

model (Rubin 2005), this finding is problematic because it fails to account for selection

into treatment. Customers who are frugal are both less likely to tip and more likely to

authorize sharing, enticed by lower fares. To effectively infer the ATE of authorizing a

shared ride on tipping, one must deal with the endogeneity associated with selection of

people with a lower propensity to tip into authorizing shared rides. In this case, the ATE

would capture the difference in tipping if UberPool or Lyft Line rides were randomly

assigned across all passengers, no matter their proclivity to tip.

3.2.2 Data

Our data include 890,000 dedicated (i.e. standard, “single-transaction” UberX and Lyft

rides) and sharing-authorized Uber and Lyft rides taken within the city limits of Chicago

from June 30 to September 30, 2019. The data come from the Chicago Department of Busi-

ness Affairs and Consumer Protection’s Transportation Network Providers Data Portal.13

Each observation represents a single transaction on either app. These data show whether

the passenger authorized a shared ride (i.e., X), whether the passenger actually shared

a ride with another paying customer (i.e., M),14 and the passenger’s tipping behavior at

both the extensive and intensive margins (i.e, Y).

These data provide the base fare (rounded to the nearest $2.50) and tip amount (rounded

to the nearest $1.00).15 For the extensive margin of tipping, our dependent variable is a

dummy variable capturing whether a passenger tips. For the intensive margin, we use the

13The data are the first and only publicly available data on transportation network company trips and
have been collected since November 2018. They can be downloaded via the City of Chicago’s website.

14The data show the number of overlapping sharing-authorized rides a given ride occurred within.
Specifically, this field counts how many individual passengers were transported between any two points
in time during which the car was occupied by passengers. Any number over one indicates that a ride was
shared with at least one other passenger.

15We remove observations with fare level under $2.50 and over $50 to analyze a reasonable range of
fares. We discuss the measurement error introduced by these respective rounding schemes below, when
interpreting our results.
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TABLE II: Summary Statistics

Fare ($) Tip ($) Tipped (Dummy) Observations
Ride Type Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. N % Total

Full Sample Dedicated 10.842 (6.884) 0.659 (1.602) 0.215 (0.411) 750,883 84.2%
Sharing Authorized 9.055 (5.401) 0.208 (0.815) 0.092 (0.289) 140,446 15.8%

Sharing Authorized Shared 9.332 (5.628) 0.207 (0.791) 0.092 (0.289) 88,372 62.9%
Not Shared 8.583 (4.957) 0.209 (0.853) 0.091 (0.288) 52,074 37.1%

observed tip value.16 Additionally, we generate several sets of fixed effects from observed

time and geographic indicators, including for each origin–destination pair of community

areas in Chicago.17 Summary statistics are provided in Table II.

Though our M variable (i.e., whether a passenger who authorized a shared ride ac-

tually get to share a ride) is not strictly exogenous to either our X (i.e., whether a pas-

senger authorizes a shared ride) and Y (i.e., tipping behavior) variables, we argue that it

is conditionally exogenous to both those variables. Indeed, we first condition on a ride’s

fare level, exploiting app algorithms that set fares according to the likelihood a ride is

ultimately shared. This helps control for the propensity that any given ride is shared.

Although this variable does help control for endogenous factors embedded in the app’s

algorithms, the rounding of these data to the nearest $2.50 makes conditioning on fare

level less precise. Second, to further condition away potential endogeneity between the

likelihood a (sharing-authorized) ride is actually shared on the one hand and tipping on

the other hand, we control for date, hour, day of the week–hour, and origin–destination

fixed effects. Between controlling for fare level and those several layers of fixed effects, we

plausibly uphold the assumption of ignorability (Rosenbaum and Rubin 1983). In other

words, although M may not be strictly exogenous to X and Y, our controls ensure that it

is plausibly conditionally exogenous to them in this application.18

16To account for the high number of zero observations (indicating a passenger did not tip), and because
we would ideally want to take the logarithm of tip value, we apply the inverse hyperbolic sine (i.e., arc-
sinh) transformation, a log-like transformation which allows to keep the zero-valued observations, before
calculating elasticities (see derivations in Bellemare and Wichman 2019, and see Card et al. 2020 for an
application).

17Chicago is divided into 77 community areas for policy, planning, and statistical purposes. The data
show the origin and destination community areas, which we use to develop the origin–destination pair
fixed effects.

18In this application, we include the same exact set of controls in both stages of FDC estimation. This
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Before proceeding, it is important to note that the mediator (i.e., whether a ride for

which sharing has been authorized is actually shared) is—at least in principle—relevant

to tipping. There are several reasons why we can expect sharing assignment (i.e., M) to

affect tipping behavior (i.e., Y). Tipping variation in ride-hailing and taxi settings can be

affected by demand-side factors such as rider experience, mood, and social preferences.

(Chandar et al. 2019). For example, A passenger’s experience or mood be worsened by

sharing a car with a stranger or if a driver takes additional time to drop off or pick up

another passenger. This may be especially true if passengers initially authorized sharing

hoping that their ride would fall into the roughly 40% of sharing-authorized rides that

do not overlap with another passenger’s trip. Tipping is also motivated by a desire to

avoid unpleasant feelings of guilt and embarrassment (Azar 2020). However, the guilt as-

sociated with not tipping or tipping a low amount may decline when a passenger knows

another rider may tip—behavior which is reminiscent of the free-rider problem (Boyes et

al. 2006). This, combined with the fact the correlation between whether a passenger au-

thorizes a shared ride (i.e., X) and whether a passenger actually gets to share a ride (i.e.,

M) is almost surely nonzero, provides some assurance that the double relevance require-

ment is satisfied. Below, we show that it is actually met, as double relevance is a testable

requirement.19

Our estimation strategy consists of estimating the following equations.

Naïve: Yi = β0 + β1Xi + β2Fi + β3Ti + β4Gi + εi (20)

FDC First Stage: Mi = γ0 + γ1Xi + γ2Fi + γ3Ti + γ4Gi + ωi (21)

FDC Second Stage: Yi = δ0 + δ1Xi + δ2Mi + δ3Fi + δ4Ti ++δ5Gi + νi (22)

is because the exact same controls are necessary to uphold conditional exogeneity of both X and M. In
other applications, it may not be necessary to include identical sets of controls if conditional exogeneity at
different stages of estimation can be upheld through conditioning on different sets of observables.

19Double relevance can be ascertained with simple t-tests of the coefficients on X in the first stage and on
M in the second stage, with the usual null hypotheses that those coefficients are equal to zero.
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where Y represents tipping at either the extensive or intensive margin, F is the fare level,

T is a vector of time fixed effects (i.e., date, hour, and day of the week–hour fixed effects),

and G is a vector of geographic fixed effects (i.e., origin-destination pairs). Additionally,

X is our treatment variable, which indicates whether a passenger authorized ride-sharing,

and M indicates whether the ride was actually shared with another passenger.

We estimate the two FDC equations by seemingly unrelated regression (Zellner 1963)

to account for the correlation between the error terms of equations 21 and 22. To recover

the ATE of X on Y estimated by the FDC, we simply multiply the coefficient estimates γ̂1

and δ̂2 by each other. Because the ATE is a nonlinear combination of coefficients, standard

errors for the ATE estimated by the FDC are obtained using the delta method.

In this empirical application, the identifying assumptions follow those discussed in

Section 2. First, the only way in which X influences Y is through M. This assumption

is supported by the fact that the only way authorizing a shared a ride X can ever in-

fluence tipping behavior Y is if the passenger actually gets to share a ride M. Second,

Cov(X, ω) = 0. This assumption is supported by the fact that M is determined by X and

the embedded app algorithm. Third, Cov(M, ν) = 0. Conditional on X, F, T, and G we

argue that this is a valid assumption. Fourth, P(Xi|Mi) > 0, which is valid because if

M = 1 then X = 1 and if M = 0 then X = 1 or X = 0. Finally, γ̂1 > 0 and δ̂2 > 0, which

is valid as shown in the results below.

3.2.3 Results

Table III shows results for tipping at the extensive margin. In this case, the naïve specifi-

cation estimates that authorizing sharing reduces the probability a rider will tip by 5.8%.

The FDC, however, estimates that authorizing sharing reduces tipping probability by only

0.5%, an ATE a full order of magnitude smaller than the naïve estimate. The difference

between the two ATE estimates suggests that much of the naïve specification simply cap-

tures endogeneity of selection into treatment. Additionally, the results in Table III show

18



TABLE III: The Effect of Authorizing Sharing on Tipping at the Extensive Margin

Naïve Front-Door
Variables Tipped Shared Trip Tipped

(1) (2) (3)

Sharing Authorized (X) -0.073*** 0.621*** -0.067***
(0.001) (0.001) (0.001)

Shared Trip (M) – – -0.009***
(0.002)

Intercept 0.114*** 0.0882*** 0.115***
(0.006) (0.003) (0.006)

Estimated ATE -0.073*** -0.006***
(0.001) (0.001)

Elasticity -5.8%*** -0.5%***
(0.001) (0.001)

Observations 891,329 891,329
R-squared 0.051 0.614 0.051
Notes: Both specifications control for fare level, date, hour, day of
the week–hour, and origin–destination fixed effects. FDC specifi-
cation estimated using seemingly unrelated regression. Standard
errors for the FDC ATE and ATE elasticity computed using the
delta method. *** p<0.01, ** p<0.05, * p<0.1.

that the double relevance condition is satisfied because the coefficient on X in column 2

and the coefficient on M in column 3 are both statistically different from zero.

Table IV shows results for tipping at the intensive margin. These results mirror those

for tipping at the extensive margin. The naïve specification finds that authorizing shar-

ing reduces the tip by about 3.6%. The FDC presents a much lower, yet still statistically

significant effect. The ATE calculated using the FDC finds that authorizing sharing re-

duces tip payments by about 0.2%, an effect that is less than a tenth of the magnitude of

the naïve ATE estimate. Here, too, the double relevance condition is satisfied because the

coefficient on X in column 2 and the coefficient on M in column 3 are both statistically

different from zero.
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TABLE IV: The Effect of Authorizing Sharing on Tipping at the Intensive Margin

Naïve Front-Door
Variables arcsinh(Tip) Shared Trip arcsinh(Tip)

(1) (2) (3)

Sharing Authorized (X) -0.127*** 0.621*** -0.119***
(0.002) (0.001) (0.002)

Shared Trip (M) – – -0.013***
(0.003)

Intercept 0.113*** 0.0882*** 0.114***
(0.010) (0.003) (0.010)

Estimated ATE -0.127*** -0.008***
(0.002) (0.001)

Elasticity -3.6%*** -0.2%***
(0.001) (0.001)

Observations 891,329 891,329
R-squared 0.084 0.614 0.084
Notes: Both specifications control for fare level, date, hour, day of
the week–hour, and origin–destination fixed effects. FDC specifi-
cation estimated using seemingly unrelated regression. Standard
errors for the FDC ATE and ATE elasticity computed using the
delta method. *** p<0.01, ** p<0.05, * p<0.1.
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3.2.4 Discussion

This application demonstrates the usefulness of the FDC. By exploiting the conditional ex-

ogeneity of ride sharing, we can estimate the ATE of authorizing a shared ride on tipping.

As it turns out, the FDC estimates lower ATEs than those estimated by the naïve specifi-

cation, at both the intensive and extensive margins of tipping. This result suggests that

if one had conducted a randomized controlled trial wherein passengers are randomly as-

signed to either a dedicated (i.e., single-passenger) or sharing-authorized ride in Chicago

between June 30 and September 30, 2019, one would have estimated effects of sharing-

authorized rides on tipping that are similar to ours.

From a business strategy perspective, this suggests that making all rides sharing-

authorized as the default setting out of which passengers would have to opt out could

lead to efficiency gains for ride-hailing firms and higher tips for those firms’ drivers by

exploiting status quo bias (Kahneman et al. 1991; Fernandez and Rodrik 1991). Indeed,

if all passengers are de facto assigned to a sharing-authorized ride out of which they have

to opt out should they prefer to ride alone, some passengers who would otherwise have

not chosen to share a ride will remain in the sharing-authorized category. Our results

indicate that this could lead to a greater likelihood that passengers will tip and tip larger

amounts on shared rides than otherwise.20 Furthermore, an increase in the number of

shared rides is likely to lead in decreased costs for ride-hailing firms via ride consolida-

tion. Ultimately, this could lead to increased profits for those firms without limiting pas-

senger agency, though this claim is obviously speculative given that we do not observe

the cost structure of ride-hailing firms.

The data have a few weaknesses. First, the data do not differentiate between Uber

and Lyft rides. Though it is likely that Uber and Lyft employ different algorithms for

setting fares once a rider opts to authorize sharing, we are confident that our strategy of

20Alternatively, firms could mandate a minimum tip payment for both sharing-authorized and dedicated
rides.
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conditioning on fixed effects adequately takes care of this issue.

Additionally, we do not observe the exact tip or fare payments, observing rounded

values instead.21 This means that in columns 2 and 3 of Table IV, we are dealing with

two sources of classical measurement error. The first is classical measurement error in

fare level,22 which is a control variable in both columns 2 and 3. We are not worried

about this source of measurement error because it merely biases the coefficient on fare

level–a control variable whose coefficient is not directly of interest in our analysis–toward

zero. The second source of measurement error is classical measurement error in tipping

amount, i.e., the dependent variable, in column 3. This is in principle more problematic

because classical measurement error in the dependent variable leads to less precise esti-

mates. Though this would be worrisome in a small sample because it could lead to a type

II error (i.e., we would fail to reject the null hypothesis that the coefficient on M is equal to

zero), this is not an issue in our a sample of over 890,000 observations—we indeed reject

the null hypothesis that the coefficient on M in column 3 is equal to zero.

4 Departures from the Ideal Case

Having discussed how one can use the FDC to estimate ATEs both in theory and in prac-

tice in section 2, and having illustrated the use of the FDC to estimate ATEs using both

simulation and real-world data in section 3, we now turn to investigate what happens

when some of the assumptions required for the FDC to identify an ATE fail to hold. To

do so, we look in turn at what happens with multiple mediators, when the mediator is no

longer strictly exogenous, and when the treatment is totally defined by the mediator.

21This mainly challenges the calculation of the effect of authorizing sharing on tipping percentage, a
potentially interesting causal relationship which we do not explore because the dependent variable (i.e.,
tipping percentage) would have to be calculated on the basis of two variables measured with error.

22For example, because fares are rounded at the nearest $2.50 in the data, a reported $15 ride’s true fare
could lie anywhere in the ($13.75, $16.25) interval.
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4.1 Multiple Mediators

Pearl’s (1995, 2000) canonical treatment of the front-door criterion assumes that M is a

single variable, and not a vector of mediator variables. Consequently, in the empirical

examples in section 3, we considered cases where the mediators, M, is defined by a single

variable rather than a vector. In this sub-section we consider how to implement a case

where we have multiple mediators.

FIGURE II: Multiple Mediators—Case 1

M2X Y

M1

U

There are two basic cases in which we can imagine multiple mediators. Of course, one

can imagine more complicated cases that combine these two basic cases. For illustrative

purposes, however, we will examine these two cases separately. In the first case, as shown

in Figure II, the multiple mediators are independent from each other. Specifically, a path

flows from X to both M1 and M2, and additionally, a path flows from both M1 and M2

to Y. In this case, M1 and M2 together intercept all directed paths from X to Y and meet

the requirement of condition (i).23 By simply examining Figure II it is clear that omitting

either M1 or M2 from the estimation will violate condition (i), since the single mediator

does not intercept all directed paths from X to Y.

In the second case, as shown in Figure III, the multiple mediators both lie on the same

path between X and Y. Specifically, a path flows from X to M1, from M1 to M2, and

finally from M2 to Y. In this case, either M1 or M2 intercept all directed paths from X to

Y and meet the requirement of condition (i). In contrast to the previous case, omitting

23This case, where M1 and M2 together intercept all directed paths from X to Y is similar to the surrogate
index of Athey et al. (2019).
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FIGURE III: Multiple Mediators—Case 2

M1X M2 Y

U

either M1 or M2 from the estimation will not violate condition (i), since both mediators

individually intercept all directed paths from X to Y. Therefore the FDC approach will

recover the ATE when using either only M1, only M2, or both M1 and M2 as mediators in

the FDC estimation. This point should be obvious based on conceptual reasoning, but a

simulation showing this result can be found in Appendix 2.

We now show simulation results that demonstrate the consequences of multiple me-

diators of the sort illustrated in Figure II, where multiple mediators lie on different paths

from X to Y.

Our simulation setup is as follows. Let Ui ∼ N(0, 1), εXi ∼ N(0, 1), Z1i ∼ U(0, 1),

Z2i ∼ U(0, 1), εM1i ∼ N(0, 1), εM2i ∼ N(0, 1), and εYi ∼ N(0, 1) for a sample size of

N = 100, 000 observations. Then, let

Xi = 0.5Ui + εXi, (23)

M1i = Z1iXi + εM1i, (24)

M2i = Z2iXi + εM2i, (25)

and

Yi = 0.5M1i + 0.5M2i + 0.5Ui + εYi. (26)

As illustrated in Figure II, this fully satisfies Pearl’s (1995, 2000) three main assump-

tions (and the two additional data requirements) for the FDC to be able to estimate the

average treatment effect of X on Y. By substituting Equations 24 and 25 into Equation 26,

it should be immediately obvious to the reader that the true ATE is equal to 0.500 in our
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simulations.

Similar to the previous simulation analysis, we estimate several specifications. The

first specification estimates

Y = α1 + β1Xi + ζ1Ui + ε1i, (27)

where, because both X and U are included on the right-hand-side, E(β̂1) = β, i.e., the

true ATE.

The second specification estimates

M1i = κ1 + γ1Xi + ω1i, (28)

M2i = π1 + ρ1Xi + ξ1i, and (29)

Yi = λ1 + δ1M1i + τ1M2i + φ1Xi + ν1i, (30)

where the unobserved confounder U does not appear anywhere. The small difference in

the case of multiple independent mediators is the true ATE is calculated by adding two

products together, E[(γ̂1 · δ̂1) + (ρ̂1 · τ̂1)] = β.

Column 1 of Table V shows our benchmark estimation results for Equation 27. Col-

umn 2 shows estimation results for the naïve version of Equation 27 which omits the

unobserved confounder U. Columns 3, 4, and 5 show FDC estimation results using the

specification outlined in Equations 28 to 30, respectively. Again, the estimates of the ATE

in columns 1 and 2 are quite different, and the ATE estimate is equal to 0.501 in the bench-

mark case, but it is much larger, at 0.703, in the naïve case.

Given the derivations above, it should come as no surprise that the estimate of the

ATE generated by the FDC approach accurately estimates the ATE. The FDC approach

first multiplies the coefficient on X in column 3 by the coefficient on M1 in column 5.

Next, the FDC approach multiplies the coefficient on X in column 4 by the coefficient on
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M2 in column 5. Finally, these two products are summed to estimate the ATE. Assuming

the ATE in column 1 is not correlated with the ATE computed from columns 3 through 5,

the two ATEs are statistically identical. In both cases, the estimated ATE is not statistically

different from its true value of 0.500. Finally, in column 6, the direct effect of treatment

conditional on M1, M2, and U is statistically indistinguishable from zero. More inter-

esting, however, is investigating and interpreting estimates when we erroneously omit

one of the mediators (say, for example, M2) from the FDC estimation. In this case, we

no longer can correctly assume no “direct effect” of X on Y since there is a directed path

independent of M1 via M2. This violates condition (i) of Pearl (1995, 2000).

Given the formula for bias in the FDC estimation approach, shown in equation 13, in

the presence of a non-zero “direct effect” when omitting a mediator, the estimate of the

ATE will be biased by −φ. Columns 7 through 9 in Table V demonstrate this fact. When

we omit M2 from the FDC estimation the estimated ATE (shown in columns 7 and 8)

is 0.246, quite a bit smaller than the true ATE. Column 9 shows that the “direct effect” is

0.254. Indeed, as implied by equation 13, if we add the biased FDC estimate from columns

7 and 8 to the coefficient on treatment from column 9 we recover the the true ATE.

The foregoing shows the consequences of omitting a mediator when using the FDC

approach to estimate the ATE. With that said, the effect estimated in the biased FDC esti-

mation in columns 7 and 8 of Table V can be interpreted as the “indirect effect” of X on Y

via M1 and independent of M2 (Imai et al. 2010, Acharya et al. 2016). In the literature on

causal mediation analysis, the total causal effect is framed as the aggregation of both the

direct and indirect effects (Imai et al. 2011).

A very common approach for estimating indirect or mediating effects is to simply

condition on potential mediating variables (Acharya et al. 2016). Despite the popu-

larity of this approach, conditioning on potential mediating variables can lead to bi-

ased estimation—specifically in the case when omitted variables are affected by the treat-

ment X and affect both the potential mediating variable M and the outcome Y (see, e.g.,
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Acharya et al. 2016; Imai et al. 2010). If the conditions outlined in Section 2.1 hold, then

the FDC approach allows for credible estimation of indirect effects. More specifically,

the ability to relax condition (i)—that the M intercepts all paths from X to Y—may al-

low for more credible and useful applications of the FDC approach in assisting applied

researchers estimate mediation effects. Of course, whether or not the indirect effect is a

parameter of interest for applied researchers will ultimately depend on the specific em-

pirical application and the research question.

4.2 Violations of Strict Exogeneity

Together, conditions (ii) and (iii) imply that the mediator M is excludable. More for-

mally, the strict exogeneity of M implies that P(U|M, X) = P(U|X) and P(Y|X, M, U) =

P(Y|M, U). In this sub-section, we examine violations of this assumption. Again, we do

this with a simulation analysis.

Our simulation setup is the same as in section 3, except that here we allow for the

endogeneity of M. Let Ui ∼ N(0, 1), Zi ∼ U(0, 1), εXi ∼ N(0, 1), εMi ∼ N(0, 1), and

εYi ∼ N(0, 1) for a sample size of N = 100, 000 observations. Then, let

Xi = 0.5Ui + εXi, (31)

Mi = ZiXi + ΓUi + εMi, (32)

and

Yi = 0.5Mi + 0.5Ui + εYi. (33)

The critical difference here is that now, when defining M in equation 32, U is included

on the right-hand-side. The parameter Γ defines the strength of the relationship between

U and M. In this simulation analysis we let Γ ∼ U(0, 2). By permitting the values of Γ to

vary allows the degree of endogeneity in our simulations to vary.
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FIGURE IV: The Consequences of an Endogenous Mediator

Notes: This figure illustrates simulation results using 1,000 replications from each estimation ap-
proach. The vertical axis represents the estimated effect. The horizontal axis represents the
Gamma parameter, representing the degree of endogeneity, from equation 32. The benchmark
estimates (black circles) all accurately estimate the true ATE of 0.250. The naive estimates are
shown in blue diamonds and the front-door estimates are shown in red triangles.
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We show these simulation results graphically. Figure IV illustrates how having an en-

dogenous mediator influences the credibility of using the FDC approach to estimate the

ATE. This figure shows estimated effects for three estimation approaches. First, the bench-

mark estimates (black circles), which include the confounder U on the right-hand-side of

the regression equation, accurately estimates the true ATE of 0.250. Second, the naïve

estimates (blue diamonds), which omits the confounder U from the regression equation,

consistently overestimates the ATE. The size of this bias is increasing in the strength of

the endogeneity of M. This is because, as Γ increases, the influence of the confounder

U in the relationship between X and Y increases. Finally, the front-door estimates (red

triangles) are estimated as described in equations 18 and 19 in section 2.

Once again, a few remarks are in order. First, and rather unsurprisingly, it is only

when the degree of endogeneity of M is negligible (i.e., when Γ is infinitesimally close

to zero) that the FDC approach accurately estimates the ATE. Second, when M is weakly

endogenous (i.e., when Γ > 0 but still relatively small) the FDC approach produces biased

estimates of the ATE, but these estimates are less biased than the naïve estimates. Third,

when M is strongly endogenous the FDC approach produces estimates of the ATE that

are worse—that is, more biased—than the naïve estimates.

These details lead to an important discussion for applied researchers who may want

to implement the FDC approach in their given empirical setting. In many cases, strict

exogeneity of M may be debatable. Indeed, outside of an experimental setting, convinc-

ingly arguing that P(U|M, X) = P(U|X) and P(Y|X, M, U) = P(Y|M, U) will likely be

challenging. That said, however, if applied researchers can convincingly argue that the

degree of endogeneity of M is relatively weak—that M is not strictly exogenous but that

it is plausibly exogenous (Conley et al., 2012), so to speak—then the FDC approach will

produce more reliable estimates of the ATE compared to the naïve approach which con-

sists in regressing Y on an endogenous X.24 On the other hand, when the endogeneity

24Our real-world illustration in the previous section exemplifies a scenario in which a mediator is plausi-
bly exogenous conditional on observed confounders.
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of M is obviously relatively strong, using the FDC approach could lead to more bias in

estimates of the ATE than the naïve approach. Specifically in our simulation set-up, the

FDC estimates begin to become just as biased as the naïve estimates when Γ is equal to

one. In the way we have defined our variables, this means that the direct effect of U on

M is about twice as strong as the indirect effect of U on M via X. Of course when using

real-world data, when we cannot observe U, testing the specific size of these relationships

is impossible. In nearly all practical settings, the case for the exogeneity of M will rely on

careful reasoning based on the given empirical setting.

4.3 Treatment Totally Defined by the Mediator

Recall that, in addition to the three assumptions in section 2.1 for the FDC to identify the

average treatment effect, Pearl (2000) makes a fourth assumption, namely that P(Xi|Mi) >

0. This assumption implies that for every value of the mediator M, the likelihood that an

observation will receive treatment X is nonzero. In other words, the treatment cannot be

totally defined by the mediator, and no matter what value the mediator takes, it has to be

the case that an observation has a nonzero probability of receiving the treatment.

This assumption is satisfied in our core empirical applications, but it fails to hold in the

re-analysis of the Beaman et al. (2013) randomized controlled trial in Appendix 3. In that

application, the authors randomly allocated fertilizer to rice farmers in Mali. One group

of farmers received the full recommended dose of fertilizer, a second group received half

the recommended dose, and a third group received no fertilizer. We defined the treatment

(e.g., X = 1) if a farmer received any free fertilizer, and zero otherwise. The mediator

captured the intensity of treatment (e.g., M = 1 if the farmer received the full dose, M =

0.5 if the farmer received the half dose, and M = 0 if the farmer received no fertilizer).

Therefore, in this case, a farmer who received no fertilizer (e.g., M = 0) had a probability

of receiving treatment equal to zero (e.g., X = 0). Additionally, a farmer who received

some fertilizer (e.g., M = 1 or M = 0.5) had a probability of receiving treatment equal to
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one (e.g., X = 1). Thus, in this application, P(Xi|Mi) = 0, which is a violation of Pearl’s

fourth assumption (Pearl 2000).25

Preliminary work for this paper, however, uncovered the following fact: It is only

when there are no unobserved confounders that P(Xi|Mi) = 0 is a problem. In such

cases, one only need to omit the treatment variable X from estimation in Equation 8 for

the method we outline in section 2 to recover the correct ATE. When there are unobserved

confounders, the FDC method discussed in section 2 recovers the ATE. We demonstrate

these details using simulated data in Table VI, and by showing results using the Beaman

et al. (2013) experimental data in Appendix 4.

Our simulation set up here differs slightly from those previously discussed. Let Ui ∼

B(1, 0.5), ZXi ∼ B(1, 0.5), ZMi ∼ B(1, 0.5), εYi ∼ N(0, 1) for a sample size of N = 100, 000

observations. Then, let

Xi = ZXiUi (34)

Mi = ZMiXi + Xi (35)

Yi = 0.5Mi + 0.5Ui + εYi (36)

This generates data that characterize a setting where the treatment is totally defined by

the mediator. Specifically, the binary treatment X is endogenous to the outcome Y. The

mediator M is now binary and is strictly a function of the treatment and can be considered

akin to treatment intensity. That is, for treated units (i.e., X = 1), M = 1 or M = 2. For

untreated units (e.g., X = 0), M = 0.

Table VI shows that even when the treatment is totally defined by the mediator, the

FDC method discussed in section 2 recovers the true ATE when the treatment is endoge-

25Though it is obvious how experimental settings may naturally lead to cases where P(Xi|Mi) = 0,
violations of this assumption are not the exclusive preserve of experimental research designs. Indeed, it is
not difficult to imagine observational research designs where only those subjects who select into receiving a
given treatment can actually receive that treatment in nonzero amounts. Therefore, this discussion remains
relevant for observational research settings.
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TABLE VI: Treatment Totally Defined by the Mediator—Endogenous Treatment

Benchmark Naïve Front-Door

Variables Y Y M Y
(1) (2) (3) (4)

Treatment (X) 0.743*** 1.078*** 1.503*** 0.322***
(0.009) (0.008) (0.002) (0.021)

Mediator (M) – – – 0.503***
(0.013)

Confounder (U) 0.503*** – – –
(0.008)

Intercept -0.005 0.173*** 0.000 0.173***
(0.005) (0.004) (0.001) (0.004)

Estimated ATE 0.743*** 1.078*** 0.755***
(0.006) (0.008) (0.019)

Observations 100,000 100,000 100,000
Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05,
* p<0.1. The front-door equations in columns (3) and (4) are
estimated by seemingly unrelated regressions. The standard
error for the front-door ATE is estimated by the delta method.

nous. This does not hold, however, when treatment is exogenous. Table IX, displayed

in Appendix 4, highlights the fact that when the treatment is exogenous and is totally

defined by the mediator, implementing the FDC method as discussed in section 2 will

lead to biased estimates of the ATE. Since, treatment is exogenous in this case, however,

there is no back-door path from U to X and we do not need to control for treatment in the

second stage FDC regression. As it turns out, omitting the treatment variable from the

second-stage FDC regression allows for the FDC to recover the ATE.

Therefore, the “problem” of the treatment being totally defined by the mediator is

only really problematic in cases when treatment is exogenous. Such cases, however, only

really arise when X and M are experimentally assigned, and in which case the FDC is

not necessary method to estimate the ATE. In those cases, a simple regression of Y on X

will return that ATE. As such, the fact that P(Xi|Mi) > 0 may not hold remains a largely

theoretical issue compared to the other issues discussed in this paper.
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5 Conclusion

We have focused on the application of Pearl’s (1995, 2000) front-door criterion. Because

the goal of most research in applied economics nowadays is to answer questions of the

form “What is the causal effect of X on Y?,” economists should welcome the addition of

techniques that allow answering such questions to their empirical toolkit. Yet economists

have been reluctant to incorporate the FDC in that toolkit.

We focus here first on explaining how to use the front-door criterion in the context of

linear regression, which remains the workhorse of applied economics. Second, we present

two empirical examples: one using simulated data, and one relying on observational data

on Uber and Lyft rides in Chicago between June 30 and September 30, 2019. Our obser-

vational example is, to our knowledge, the first application of the front-door criterion

to observational data where the necessary assumptions plausibly hold. Finally, in an ef-

fort to help overcome economists’ resistance to incorporating the front-door criterion in

their empirical toolkit, we look at what happens when the assumptions underpinning the

front-door criterion are violated, and what can be done about it in practice. Along the

way, we also identify an additional “double relevance” requirement for the front-door

criterion to estimate the relevant average treatment effect—a requirement akin to the rel-

evance requirement for a valid instrumental variable to identify a local average treatment

effect (Imbens and Angrist 1994).

Our results lead to the following recommendations for applied work:

1. Because the FDC estimand is the product of two estimated coefficients from two

separate regressions, it is best to estimate those two regressions simultaneously to

account for the correlation in the errors. We do so in this paper by seemingly unre-

lated regression (Zellner 1963).

2. Because the FDC estimand is a nonlinear combination of two estimated coefficients,

standard errors can be computed either by the delta method or by bootstrapping.
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In small samples, bootstrapping should be preferred to the delta method (Davidson

and MacKinnon 2004).

3. For the FDC to estimate the ATE of X on Y, an additional condition has to be em-

pirically satisfied where the estimated effects of X on M and of M on Y have to be

different from zero for the ATE itself to be different from zero. We have dubbed this

the “double relevance” condition and, to our knowledge, this is a new insight in the

literature on the front-door criterion.

4. When the treatment operates through more than one mediator, the average treat-

ment effect is the sum of the partial treatment effects (i.e., the “indirect effects”),

defined by the effect of the treatment on outcome through each mediator.

5. When the mediator is no longer strictly exogenous, the usefulness of the FDC de-

pends on the degree of exogeneity of the mediator. In cases where the mediator is

only plausibly—but not strictly—exogenous (Conley et al., 2012), the estimate of the

ATE obtained by the FDC is closer to the true value of the ATE than the estimate of

the ATE obtained by a naïve regression of outcome on treatment. In cases where the

mediator is deemed to be strongly endogenous, the estimate of the ATE obtained

by the FDC is further from the true value of the ATE than the estimate of the ATE

obtained by a naïve regression of outcome on treatment.

6. The FDC is most promising in cases where units of observations are selected into

treatment on the basis of unobservables which also affect the outcome, but for which

treatment intensity or non-compliance to the treatment can argued to be (as good as)

randomly assigned.

Ultimately, the front-door criterion is a useful tool for applied researchers interested

in causal inference with observational data. When selection into treatment is endogenous

but there exists a single, plausibly exogenous mediator whereby the treatment causes the
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outcome, the front-door criterion can be argued to credibly identify the causal effect of

treatment on outcome.
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269âĂŞ327.

Chandar, B., Gneezy, U., List, J.A., and Muir, I. (2019) “The Drivers of Social Pref-

erences: Evidence From a Nationwide Tipping Experiment,” NBER Working Paper no.

26380.

CompassRed (2019)“Want To Get a Tip As An Uber Driver? Don’t Pick-Up A Shared

Ride,” https://www.compassred.com/data-journal/want-to-get-a-tip-as-an-uber-driver-

dont-pick-up-a-shared-ride last accessed May 26, 2020.

37



Conley, T.G., C.B. Hansen, and P.E. Rossi (2012) “Plausibly Exogenous,” Review of

Economics and Statistics, vol. 94, no. 1, pp. 260-272.

Davidson, R. and MacKinnon, J. G. (2004) Econometric Theory and Methods, Oxford

University Press, New York.

Fernandez, R. and Rodrik, D. (1991) “Resistance to Reform: Status Quo Bias in the

Presence of Individual- Specific Uncertainty,” American Economic Review, vol. 81, no. 5,

pp. 1146-1155.

Glynn, A.N. and Kashin, K. (2017) “Front-Door Difference-in-Differences Estima-

tors,” American Journal of Political Science, vol. 61, no. 4, pp. 989-1002.

Glynn, A.N. and Kashin, K. (2018) “Front-Door Versus Back-Door Adjustment With

Unmeasured Confounding: Bias Formulas for Front-Door and Hybrid Adjustments With

Application to a Job Training Program,” Journal of the American Statistical Association, vol.

113, no. 523, pp. 1040-1049.

Gupta, S., Z.C. Lipton, and Childers, D. (2020) “Estimating Treatment Effects with

Observed Confounders and Mediators,” Working Paper, Carnegie Mellon University.

Hemel, D. J. (2017) “Pooling and Unpooling in the Uber Economy,” University of

Chicago Legal Forum vol. 2017, pp. 265-286.

Imai, K., Keele, L., and Yamamoto, T. (2010) “Identification, Inference and Sensitivity

Analysis for Causal Mediation Effects,” Statistical Science, vol. 25, no. 1, pp. 51-71.

Imai, K., Keele, L., Tingley, D., and Yamamoto, T. (2011) “Unpacking the Black Box

of Causality: Learning about Causal Mechanisms from Experimental and Observational

Studies,” American Political Science Review, vol. 105, no. 4, pp. 765-789.

Imbens, G.W. (2020) “Potential Outcome and Directed Acyclic Graph Approaches to

Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature,

forthcoming.

Imbens, G.W., and Angrist, J.D. (1994) “Identification and Estimation of Local Aver-

age Treatment Effects,” Econometrica, vol 62, no. 2, pp. 467-475.

38



Kahneman, D. Knetsch, J.L., and Thaler, R.H. (1991) “Anomalies: The Endowment

Effect, Loss Aversion, and Status Quo Bias,” Journal of Economic Perspectives, vol. 5, no. 1,

pp 193-200.

Morgan, S.L., and Winship, C. (2015) Counterfactuals and Causal Inference, Cambridge

University Press, Cambridge, United Kingdom.

Pearl, J. (1995) “Causal Diagrams for Empirical Research,” Biometrika, vol. 82, no. 4,

pp. 669-688.

Pearl, J. (2000) Causality: Models, Reasoning, and Inference, Cambridge University Press,

Cambridge, United Kingdom.

Pearl, J. and Mackenzie D. (2018) The Book of Why: The New Science of Cause and Effect,

Basic Books: New York, NY.

Rosenbaum, P. and Rubin, D. (1983) “The Central Role of the Propensity Score in

Observational Studies for Causal Effects," Biometrika, vol. 70, pp. 41-55.

Rubin, D.B. (2005) “Causal Inference Using Potential Outcomes: Design, Modeling,

Decisions,” Journal of the American Statistical Association, vol. 100, no. 469, pp. 322-331.

Wu, Y., Chen, X., and Jingwen, M. (2018) “Modeling Passengers’ Choice in Ride-

Hailing Service with Dedicated-Ride Option and Ride-Sharing Option,” ICIBE’ 18: Pro-

ceedings of the 4th International Conference on Industrial and Business Engineering, pp.

94-98.

Zellner A. “Estimators for Seemingly Unrelated Regression Equations: Some Exact

Finite Sample Results,” Journal of the American Statistical Association, vol. 58, no. 304, pp.

977-992.

39



Appendix

A1. Mediators as Instruments

In this appendix we discuss the consequences of using the exogenous mediator M, which

satisfies the FDC requirements and assumptions, as an instrumental variable.

Recall the usual instrumental variable (IV) setup required for the local average treat-

ment effect (LATE) theorem to hold (Imbens and Angrist 1994): The treatment variable

X is endogenous to the outcome of interest Y, but the econometrician has access to an

instrumental variable Z which (i) is independent, (ii) satisfies the exclusion restriction,

and is (ii) relevant. At the outset, it may seem tempting to simply use the mediator M as

an instrument instead of using the front-door criterion. Ultimately, however, this is not

advisable.

Assume, for illustrative purposes, that both the treatment X and mediator M are bi-

nary variables. Further assume, as is the case in our ride-sharing empirical application,

that we have one-sided noncompliance. So, if M = 1 then X = 1 and if M = 0 then

X = 1 or X = 0. In this case, there are zero never-takers and zero defiers in the sample by

construction. With one-sided non-compliance, of the sort defined in this illustration, the

entire sample are either compliers or always takers.

The core difference between using the mediator M as an instrument versus using the

mediator M in the FDC method is that the former estimates a LATE and the latter es-

timates an ATE. In an ideal IV set-up, with monotonicity, the instrument removes en-

dogenous variation driven by differences between the compliers and the never takers or

always takers. The resulting LATE is the ATE for the sub-set of the sample who comply to

the instrument. In an ideal FDC set-up, non-compliance is exogenous and identification

fundamentally relies on this variation. Thus, the FDC calculates an ATE for the entire

sample.

More specifically, although the placement of M on the path between X and Y means

that M cannot be used to identify a LATE because M does not cause X, exogeneity of
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M in the FDC setup means that M can still be used as an IV (provided the relevance

requirement is satisfied) because M satisfies the independence requirement.26 In practice

this means that instead of causing X as in the LATE scenario, M is merely correlated with

X when used as an IV. This brings a few issues to the fore. First, on the relevance front,

when there is low correlation between Y and M, the latter is a weak instrument if it is

used as an IV, which means that the estimate obtained therefrom collapses to that of the

naïve OLS estimator. If instead M is used in an FDC setup, the regression of Y on M

conditional on X yields a statistically insignificant coefficient on M, and so the estimate

of the ATE goes to zero.

Second, and more importantly, when using M as an IV, the estimate of the treatment

effect obtained will almost surely be different than the estimate of the (average) treatment

effect obtained when using M in context of the FDC. Indeed, the usual IV setup—in which

the relationship between X and the IV is given a causal interpretation—allows estimating

a LATE precisely because uptake of treatment X is caused by the IV. But if one were to

use M as an IV, rather than having M cause X, one would only have M be correlated

with X (say, via the unobserved propensity to take up the treatment) instead of being

caused by it. But then, the LATE interpretation no longer holds, since individual units

are no longer induced to take up the treatment by the instrument, and it is not entirely

clear what interpretation can be given to the IV estimate. Between using M in an FDC

setup (and recovering the ATE of X on Y) on the one hand and using M as an IV for X

(and recovering a nebulous treatment effect whose interpretation is unclear) on the other

hand, it should be obvious that the former is preferable. In the context of our application,

using the mediator M as an instrument yields ATE estimates less consistent than the naïve

specification, as anticipated.

26In this case, the IV is more accurately described as a surrogate IV (Morgan and Winship 2015). See
Athey et al. (2019) on the use of multiple surrogates to estimate treatment effects.

41



A2. Multiple Mediators–Case 2

We now show the results of a simulation that demonstrate the consequences (or lack

thereof) of multiple mediators of the sort illustrated in Figure I, where multiple mediators

lie on the same path from X to Y.

Our simulation setup is as follows. Let U ∼ N(0, 1), εX ∼ N(0, 1), Z1 ∼ U(0, 1),

Z2 ∼ U(0, 1), εM1 ∼ N(0, 1), εM2 ∼ N(0, 1), and εY ∼ N(0, 1) for a sample size of

N = 100, 000 observations. Then, let

Xi = 0.5Ui + εXi, (37)

M1i = Z1iXi + εM1i, (38)

M2i = Z2i M1i + εM2i, (39)

and

Yi = 0.5M2i + 0.5Ui + εYi. (40)

As illustrated in Figure I, this fully satisfies Pearl’s (1995, 2000) three criteria for the

FDC to be able to estimate the average treatment effect of X on Y. By substituting equation

38 into equation 39 and substituting equation 39 into Equation 40, it should be immedi-

ately obvious to the reader that the true ATE is equal to 0.125 in our simulations.

Similar to the previous simulation analysis, we estimate several specifications. The

first specification estimates the true ATE by controlling for the confounder U. The second

specification estimates the ATE using the FDC approach. As the results in Table VII show,

estimates of the ATE with the FDC approach in this case are statistically invariant whether

either or both M1 and M2 are included in the estimation procedure.
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A3. Real-World Application: Experimental Replication

This section illustrates the FDC using the results of an experimental study by Beaman et

al. (2013). In Table VIII, we replicate results from Beaman et al. (2013), who conduct a

randomized controlled trial with rice farmers in Mali. Starting from the full sample, units

of observations are either assigned to a treatment group or a control group, with treated

units receiving fertilizer and control units receiving no fertilizer.

In this application, we exploit as a mediator the fact that treatment intensity varies

at random within the treatment group to illustrate the FDC in practice. About half of

the treatment-group observations receive half of the prescribed amount of fertilizer, the

remainder of the treatment-group observations receiving the full prescribed amount of

fertilizer, and the control-group observations receiving none of the prescribed amount of

fertilizer.

As one would expect from the derivations in Section 2, the results in Table VIII show

that the ATEs obtained by the FDC are all statistically indistinguishable from the bench-

mark ATEs. For example, considering the average rate of fertilizer use among the control

group is 0.32, the benchmark estimate (in column 1) suggests that receiving free fertil-

izer increases the use of fertilizer over twofold. The FDC approach roughly replicates

(in column 2) this benchmark estimate. The similarity between the benchmark and FDC

estimates persist for the the quantity of fertilizer use (columns 3 and 4) and fertilizer ex-

penses (columns 5 and 6). The results show that receipt of free fertilizer leads to increases

in the use of fertilizer at both the extensive and intensive margins and reduces fertilizer

expenses.

A few remarks are in order. First, the real-world results in this section are most use-

ful for highlighting the potential of the FDC approach in estimating treatment effects in

settings where each of the conditions hold. Of course, since Beaman et al. (2013) assign

treatment experimentally, the FDC approach is not necessary to estimate treatment effects

in that context.
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TABLE VIII: Empirical Illustration — Rice Production and Fertilizer Use in Mali

Use of Fertilizer Fertilizer Quantity Fertilizer Expenses
(1) (2) (3) (4) (5) (6)

Benchmark 0.639*** 27.24*** -2,717.1***
(0.033) (3.568) (464.6)

Front-Door 0.603*** 26.64*** -2,605.3***
(0.030) (3.002) (389.7)

Observations 378 378 378 378 373 373
Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All
columns include the same control variables as in Beaman et al. (2013). Columns
(1), (3), and (5) represent benchmark OLS estimates of the ATEs of receiving fertil-
izer on the outcome variables. The estimates in columns (1), (3), and (5) replicate
the findings of Beaman et al. (2013) except that the original study differentiates
between two treatment groups defined by intensity of treatment. Columns (2),
(4), and (6) represent seemingly unrelated regression estimates of the front-door
criterion ATEs. Standard errors in columns (2), (4), and (6) are estimated by the
delta method.

Second, in that real-world experimental case, there is no need to condition on the

treatment variable (i.e., X) when estimating the effect of the mediator (i.e., M) on the

outcome (i.e., Y) since the random assignment of treatment already removes any back-

door path between Y and M. In fact, needlessly conditioning on the treatment variable

in an experimental setting leads to bias in the front-door estimate, due to violating the

assumption that P(Xi|Mi) > 0.
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A4. Treatment Totally Defined by the Mediator—Exogenous Treatment

In section 4.3 we discussed Pearl’s fourth assumption for the FDC method: that P(Xi|Mi) >

0. Through the use of simulated data, we demonstrated that violating this assumption is

really only problematic when the treatment is exogenous. In this section, we show results

using the experimental data of Beaman et al. (2013) to further highlight this detail.

The results in Table IX revisit the data in Table VIII. Here, however, odd-numbered

columns report the correct ATEs (i.e., ATEs obtained as in Equations 9, but omitting the

treatment variable in Equation 8), and even-numbered columns report biased ATEs (i.e.,

ATEs obtained as in Equations 9, but including the treatment variable in Equation 8).

These results show that when treatment is exogenous, it is not necessary to include treat-

ment into the second-stage FDC regression because there are no back-door paths from U

to X. In fact, conditioning on treatment could lead to biased estimates when using the

FDC method.

Why does the treatment need to be omitted from Equation 8 when the assumption

that P(Xi|Mi) > 0 is violated and there are no unobserved confounders? In such cases,

the variation in X is already accounted for in the variation in M. Indeed, when Mi > 0,

we know Xi = 1, and when Mi = 0, we know Xi = 0. Although it is certainly possible to

estimate Equation 8 when the treatment is totally defined by the mediator, both with and

without unobserved confounders, it is only in the former case that the inclusion of both

M and X as regressors on the left-hand side of Equation 8 will return an unbiased ATE.
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TABLE IX: Over-Controlling for the Treatment — Fertilizer Use in Mali

Use of Fertilizer Fertilizer Quantity Fertilizer Expenses
(1) (2) (3) (4) (5) (6)

Benchmark Front-Door ATE 0.603*** 26.64*** -2,605.3***
(0.030) (3.002) (389.7)

Over-Controlled Front-Door ATE 0.009 17.580*** -882.72
(0.055) (5.920) (776.90)

Observations 378 378 378 378 377 377
Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All columns include the
same control variables as in Beaman et al. (2013). Columns (1), (3), and (5) represent benchmark seem-
ingly unrelated regression FDC estimates of the ATEs of receiving fertilizer on the outcome variables.
Columns (2), (4), and (6) represent seemingly unrelated regression estimates of the front-door criterion
ATEs which over-control for treatment in the outcome regression of the FDC setup. Standard errors are
estimated by the delta method.
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